
Abstract
The computer game industry requires a skilled workforce and this 
combined  with  the  complexity  of  modern  games,  means  that 
production  costs  are  extremely  high.  One  of  the  most  time 
consuming aspects is the creation of game geometry,  the virtual 
world which the players inhabit. Procedural techniques have been 
used within computer graphics to create natural textures, simulate 
special  effects  and  generate  complex  natural  models  including 
trees  and  waterfalls.  It  is  these  procedural  techniques  that  we 
intend to harness to generate geometry and textures suitable for a 
game situated in an urban environment. Procedural techniques can 
provide many benefits for computer graphics applications when 
the correct algorithm is used. An overview of several commonly 
used procedural  techniques including fractals,  L-systems,  Perlin 
noise, tiling systems and cellular basis is provided. The function 
of  each  technique  and  the  resulting  output  they  create  are 
discussed to better understand their  characteristics,  benefits  and 
relevance to the city generation problem. City generation is the 
creation  of  an  urban  area  which  necessitates  the  creation  of 
buildings,  situated  along  streets  and  arranged  in  appropriate 
patterns.  Some research has  already taken place  into recreating 
road network patterns and generating buildings that can vary in 
function and architectural style. We will study the main body of 
existing research into procedural city generation and provide an 
overview  of  their  implementations  and  a  critique  of  their 
functionality and results. Finally we present areas in which further 
research into the generation of cities is required and outline our 
research goals for city generation.

 1 Introduction
As  technology  evolves  and  computing  power  increases,  the 
consumer  appetite  for  more  detail,  realism  and  scale  is  ever 
growing.  The  modern  media  industry,  including  games,  films, 
advertising and television, is struggling to meet the expectations 
set  by  the  largest  projects  and  everyday  production  costs  are 
spiralling out of control. 

The traditional approach to meet consumer demand has been to 
simply  increase  the  number  of  artists  working  on  a  project  to 
produce  larger,  more  detailed  and  realistic  content.  However, 
increasingly  the  artistic  pipeline  is  not  scaling,  meaning  that 
additional artist numbers do not generate a proportional yield of 
content.  The  additional  costs  incurred  add  to  the  already  high 
development costs and are paid by the consumer. The result of 
this  is  that  time  and  money  that  could  have  been  allocated  to 
improving game play or adding innovative features has been lost 
on content creation. As a consequence of high development costs, 
a barrier  of entry into  the market  is  created and new fledgling 
companies  find  it  difficult  to  get  a  foothold  thus  stifling 
innovation.

A  potential  solution  for  the  content  creation  problem  is  the 
application of procedural techniques. These techniques have been 
used for over 20 years in the field of computer graphics [17] for a 
wide range of applications: adding noise to existing textures [28], 
creating 3D textures of natural materials such as marble and wood 

[24], visualising life-like models of various tree and plant species 
[27] and  generating  detailed  cellular  textures  such  as  skin  or 
bark[17]. Entire procedural worlds are now possible and this is 
demonstrated  in  the  MojoWorld  [6] application,  where assets 
including realistic natural features such as terrain, lakes, trees and 
shrubs  are  all  generated  using  procedural  techniques.  Recently 
procedural  applications have been expanded further to simulate 
special  effects  including  particle  systems,  water,  and  even  the 
natural  physical  movements  of  assets  [5].  Complex  scenes 
containing many different models would normally take months to 
manually  construct,  now  vast  section  of  these  scenes  can  be 
created using specialist  procedural  generation packages  [7] that 
can generate detailed and varied models in minutes.  Procedural 
generation  is  a  time  saving  method  of  rapidly  and  efficiently 
generating content that can help to alleviate and potentially solve 
the problems of escalating content creation costs.

Existing  procedural  solutions  primarily  apply  procedural 
techniques to the generation of natural phenomena, but many of 
the same techniques have obvious applications in the generation 
of  man-made  artificial  phenomena.  Our  work  focuses  on  the 
creation  of  procedurally  generated  cities  for  use  in  games  and 
other graphical applications that are situated in urban landscapes. 

Cityscapes  are  difficult  to  model.  They  are  rich  in  visual  and 
functional  complexity  and  are  a  result  of  development  and 
evolution over hundreds of years under the influence of countless 
factors.  Some  of  the  major  influential  factors  affecting  cities 
include population, transport, environment, elevation, vegetation, 
geology and cultural  influence. It  is  a formidable challenge for 
researchers and developers to create a realistic model of such a 
large  and  complex  system.  We  aim  to  develop  an  accessible 
interactive  software  system  that  can  automatically  generate  a 
realistic, detailed and varied model of a city suitable for use in 
real-time rendering.

In  this  paper  we  present  a  survey  of  procedural  generation 
techniques and of attempts to apply these techniques to the city 
generation  problem.  In  Section  2  we  provide  an  overview  of 
procedural  generation  in  general  and  present  a  number  of  key 
techniques  and  algorithms.  In  Section  3  we  describe  how 
researchers have attempted to apply procedural techniques to city 
generation. Section 4 concludes with an outline of our proposed 
approach for creating a city generation system.

 2 Procedural Techniques
The key property of procedural generation is that it describes the 
entity, be it geometry, texture or effect, in terms of a sequence of 
generation instructions rather than as a static block of data. The 
instructions  can  then  be  called  on  when  required  to  create 
instances of the asset and the description can be parametrised to 
allow the generation of instances with varying characteristics. A 
typical  example of this approach would be the population of a 
forest with procedurally generated unique trees [5].

Procedural  techniques  can thus be employed  to  produce varied 
assets. One of the most basic techniques that can be used is the 
generation of 3d primitives with random parameters, for example 
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a cuboid with random height. Simple algorithms utilizing pseudo 
random functions can be employed to generate noise for use in 
texturing  and  natural  formations[28] More  complex  recursive 
algorithms such as fractals or L-systems can be used to recreate 
organic structures found in nature like snow flakes and trees [27]. 
Ebert et  al.  [17] identify the following as important features of 
procedural techniques:

• Abstraction:  Geometric and texture data is not specified in 
the conventional sense, instead details are abstracted into an 
algorithm or  set  of  procedures.  These  procedures  are  then 
handled  by  the  computer  and  called  on  when  needed. 
Minimal details are required and the operator can manipulate 
the model data easily without requiring intimate knowledge 
of the implementation.

• Parametric Control: Parameters  are  defined and adjusted 
that  directly  correspond  to  a  specific  behaviour  in  the 
procedural  generation.  The  developer  can  define  as  many 
useful  controls  as  required  for  the  artists  to  operate 
effectively. Example of parameters include the height of the 
mountains in a terrain algorithm or the number of segments 
in a procedural sphere.

• Flexibility: It is possible to capture the essence of an entity 
without  explicitly  bounding  it  within  real-world  limits. 
Parameters can then be varied to produce a wide range of 
results which are not necessarily limited to the constraints of 
the original model.

Procedural  techniques  have  been  applied  successfully  in  the 
generation  of  numerous  complex  phenomena  in  computer 
graphics and have proved beneficial for a number of reasons. 

Textures,  geometry  or  effects  abstracted  into  procedural 
algorithms are not fixed at a set resolution or number of polygons. 
Procedural techniques are therefore inherently multi-resolution in 
nature and can vary the complexity of their output. This capability 
is of particular interest to computer graphics. For example level of  
detail  (LOD)  is  important  in  any  3D  rendering  system  and 
essential  to  real-time  rendering  applications  [22].  The  concept 
behind  LOD is  to  use  more  simple  versions  of  an  entity  if  it 
contributes less to the final rendered image. So for an object that 
occupies only 4 pixels in the final image, 10,000 polygons are not 
required and a basic representation using 10 polygons would be 
sufficient.  The multi-resolution nature  of  procedural  techniques 
allows  the  possibility  of  automatically  generating  models  at 
multiple levels of detail [17].

Concise descriptions for generated objects are possible and can 
often be expressed in the terms of a few simple parameters. These 
small descriptions can be used to create large amounts of detailed 
textures and geometry, this effect is known as data amplification 
[17] and provides developers with the means to create an entire 
game  world  that  is  easily  distributable over  low-bandwidth 
network connections.  The conciseness of procedural  techniques 
are exploited by  Demo Scene creators who create and distribute 
scenes  that  are  complex and  rich  in  detail  in  the  form of  tiny 
executable files as small as 2KB [10].

The flexibility and control provided by procedural techniques give 
the designer a platform for artistic freedom and experimentation. 
New  visual  effects  and  original  objects  can  be  created  by 
experimenting  with  parameter  values  that  exceed  normal 
boundaries. [7]

Typically  procedural  algorithms  are  implemented  in  software, 
however  recent  advances in graphics hardware have opened up 
the  possibility  of  executing  them  directly  on  the  GPU.  For 
example, complex procedural techniques like volumetric textures 

that  were  previously  impossible  to  run  real-time  can  now  be 
implemented in this manner [21][16]

We now describe a number of fundamental procedural techniques 
and algorithms that have been successfully employed within the 
domain of computer graphics. 

 2.1 Fractals
Natural shapes are not easily described by conventional geometric 
methods.  Clouds are  not  spheres  and mountains  are  not  cones. 
Natural shapes tend to be irregular and fragmented and exhibit a 
complexity  incomparable  to  regular  geometry  [29].  However 
these  shapes  can  be  described  using  a  branch  of  mathematics 
called fractal mathematics.  Benoît  Mandelbrot,  regarded as  the 
'father of fractals', coined the term fractal in 1975  [29] from the 
Latin fractus meaning broken.

Figure 1: The first four iterations of the Koch snowflake

The basic concept of fractals is that they contain a large degree of 
self similarity. This means that they usually contain little copies of 
themselves  buried  deep  within  the  original  like  the  stars 
embedded in the Koch Snowflake[17] shown in   Figure 1. Also, 
fractals possess infinite detail, so for any given fractal the closer 
we look at it the more detail it can reveal. [20]

Like any procedural technique, a fractal shape is defined by an 
algorithm for generating the shape. In the case of fractals these 
algorithms  are  recursive  and  successive  recursions  yield  more 
detailed versions of the basic shape.  The example of the Koch 
snowflake in Figure 2 shows four such recursions. Self-similarity 
is achieved by generating the same shapes or patterns at smaller 
and smaller scales as the recursion progresses, a property often 
referred to as scale invariance. There is no theoretical limit to the 
amount of recursion that can be done and hence infinite levels of 
detail exist within the shape.

Visualizing fractals manually is repetitive, tedious and limited and 
therefore  computer-based implementations  of  fractal  algorithms 
have been present from the start. Mandelbrot utilized computers 
while an employee at IBM to visualise complex fractals including 
the Mandelbrot Set [29] (see Figure 2).

Figure 2: Mandelbrot Set. 
© Wiki public domain.

Figure 3: IFS Fractal Ferns [25]

Fractal-like  shapes  such  as  trees  or  ferns  can  be  procedurally 
generated using relatively simple recursive algorithms. In fact a 
wide range of natural structures from simple plants to terrain can 
be  generated  in  this  manner  [25].  Fractal  algorithms  provide 
effective abstraction from the structural complexity of the natural 



objects they represent and can utilize recursion to provide varying 
levels of detail. These techniques also provide the key property of 
data amplification in that complex models can be generated from 
the recursive application of simple equations.

Fractals  are  limited  however  to  self  similar  structures  and  the 
objects we are seeking to model may not necessarily contain this 
self-similarity.  They are  superseded  in  many contexts  by other 
more flexible algorithms like formal grammars such as L-systems.

 2.2 L-Systems
Lindenmayer  systems,  or  L-systems  for  short,  are  a  formal 
grammar devised by biologist A. Lindenmayer as a mathematical 
theory  for  biological  development.  L-systems  were  originally 
developed to study bacteria replication and the growth patterns of 
simple organisms such as Algae described by Lindenmayer in the 
Journal of Theoretical Biology in 1968  [32]. The system and its 
applications  have  evolved  and  are  now applied  in  the  field  of 
computer graphics and in particular to the generation of fractals 
and the realistic modelling of plants.

The  central  concept  of  L-systems  is  that  of  rewriting  [26].  In 
general, rewriting is a technique for defining complex objects by 
successively replacing parts of a simple initial object using a set 
of rewriting rules or productions. The components of an L-system 
are as follows:

• V (the alphabet) is a set of symbols containing elements that 
can be replaced (variables)

• S is a set  of symbols  containing elements that  remain fixed 
(constants).

• ω (start, axiom or initiator) is a string of symbols and constants 
that define the initial state of the system.

• P is a set of rules or productions defining the way variables can 
be  replaced  with  combinations  of  constants  and  other 
variables.  A  production  consists  of  two  strings  -  the 
predecessor and the successor.

An initial state or axiom, ω, is provided which is then rewritten 
using  a  series  of  rewriting  rules  or  productions,  P.  The 
productions  are  applied  iteratively,  allowing  large  complex 
objects to be defined using a simple set of productions. 

V = {a, b}
ω = a n=1 : ab
P1 : a → ab n=2 : abba
P2 : b → ba n=3 : abbabaab

Figure 4: The Thue-Morse system

L-systems  can  be  used  to  visualise  structures  by  embedding 
graphical symbols within the string that can be used later to render 
it. Turtle commands can be used to describe and visualize a wide 
range  of  L-systems  including  Koch's  snowflake,  plants  and 
branching structures. The concept behind Turtle Graphics is that 
the 'turtle' is given instructions relative to its current position and 
as  it  moves  it  leaves  a  pen  line  mark  behind  it.  Using  turtle 
graphics:  shapes,  drawing  and structures  can be defined in  the 
terms  of  a  L-system.  Using  a  bracket  extension  to  Turtle 
Graphics, L-systems can support the branching structures such as 
trees that are predominant in nature.  [32] Figure 5 illustrates the 
application of such an L-system used here to recreate a complex 
tree.

 F : forward 1 unit
 + : turn left δ degrees
 - : turn right δ degrees
 [ : push the transform state
 ] : pop the transform state

n=5, δ=22.5◦
ω = X
P1 : X→F-[[X]+X]+F[+FX]-X
P2 : F→FF

Figure 5: Tree formation generated with via the turtle graphics L-system 
interpreter. [27]

L-systems  were  designed  to  define  and  visualize  sophisticated 
plants  and  other  natural  structures.  As  academic  research  has 
continued into their application in botany it has also continued in 
the  realm  of  procedural  generation.  Significant  advances  have 
been  made  and  packages  are  now available  commercially  that 
apply  L-systems  to  generate  rich  landscapes  of  detailed  flora 
covering a wide range of different species.

Figure 6: Speed Tree [5] screenshot demonstrating procedurally generated 
and real-time rendered trees. 

L-systems  are  a  good  example  of  procedural  techniques  for  a 
number  of  reasons.  They  allow  complex  models  and  organic 
structures to be defined, modelled and visualised using a concise 
set  of  productions.  A  varying  level  of  complexity  can  be 
supported  by parameters  such  as  the  recursion  level  of  the  L-
system  [15].  The  algorithms  can  be  defined  in  a  compact  and 
intuitive  manner  and  can  effectively  abstract  the  recursive 
structure of many natural phenomena. L-system generation can be 
adjusted  easily  via  external  parameters  and  are  extensible  by 
nature similar to other formal grammars.

 2.3 Perlin Noise
Perlin Noise was initially developed to help create more “natural 
looking” textures. The technique was developed by Ken Perlin for 
use in the film Tron in 1982. As a result from his work in Tron 
Dr.  Perlin  received  an  Academy  Award  for  Technical 
Achievement  in  1997  [24].  Noise  is  created  by  first  using  a 
pseudo random function to generate a series of values which are 
then  interpolated  into  coherent  noise.  Several  layers  of  this 
coherent noise are then composited together using different ratios 
to create a “natural looking” texture with fractal like detail.



Noise Function
A noise function generates random data. So each time the function 
is called a new number is returned. This is useful however does 
not  allow  control  of  the  results  obtained.  In  order  obtain 
parametric control from the noise  generator  a seeded random 
function is used. 
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Figure 7: A seeded random generator will produce the same results when 
given the same input number or seed but still produces numbers in a 

random pattern.

Interpolation Function
Interpolation is a process of curve fitting in which a function is 
constructed that  intersects  exactly through the data points.  This 
function can generate new data points given known data points, in 
this  case  the  input  points  are  those  generated  by  the  noise 
function. For a finite set of data points a function can be generated 
that  allows  us  to  obtain  an  infinite  range  of  points.  Several 
different  algorithms are  available  to  perform this  interpolation. 
The algorithms vary in  the  number of  data points  they take as 
input, the accuracy they provide, their computational complexity 
and the smoothness of the curve that they generate. The graphs 
below demonstrate just two of the many different methods used 
for interpolation using data from Figure 7.   Figure 8 shows the 
most basic linear interpolation and   Figure 9 the more complex 
cubic interpolation.
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Figure 8: Linear interpolation is one of the simplest methods used and is 
often selected when speed is important and quality is of secondary 

importance. Linear interpolation only takes two points and the interpolant 
is calculated using the weighted mean. 
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Figure 9: Cubic interpolation is quite computationally intensive. It is 
used when quality not speed is of particular importance and it outputs a 

continuous curve unlike linear interpolation. Cubic interpolation requires 
four points.

Turbulence
Results produced from interpolated noise have random properties 
but appear quite artificial rather than natural. In nature, there are 
many  different  scales  of  detail  present.  For  example  take  a 
mountain  range:  large  details  are  present  with  giant  peaks  and 

troughs, medium scale details are present through the smaller hills 
and crests, small details present through boulders and rocks, etc.

→
Figure 10: Combination of several layers of noise.

To provide  a  more  useful  texture  source  that  resembles  nature 
more turbulence is applied by combining several noise textures of 
differing scales. Each layer of noise is referred to as an  Octave 
and  layers  are  combined  with  different  amplitudes  and 
frequencies.  The  variation  of  amplitude  and  frequency  can  be 
expressed a  Persistence  value.  Persistence  can help  describe the 
effect  successive  octaves  have  on  the  previous  iterations  by 
defining the amplitude between octaves as a fraction. Perlin Noise 
generated with a low ratio of persistence is typical smooth with 
very fine detail, Perlin Noise generated with a high persistence is 
more jagged with less fine detail.

Figure 11: Photo realistic scenery and rendered using Terragen with 
procedural geometry generation and procedural texturing. © 2003 M. 

GIULI Terragen Artist.

Terragen[9] uses  the  Perlin  Noise  algorithm to  generate  photo 
realistic terrain, clouds and seas.  Figure 11 Showcases the details 
and  scale  of  output  that  can  be  achieved  using  the  Terragen 
procedural generation software. Parametric control is vital to the 
procedural  generation process  as it  allows the generation  to be 
easily managed and enables vastly detailed scenes to be defined in 
the terms of a few parameters.  The Perlin noise algorithm also 
provides a mechanism by which the height for any point or region 
can  be  calculated  on  the  terrain  without  the  need  to  store  the 
massive terrain geometry data.

In addition to 2D textures, Perlin Noise 
can  be  used  to  generate  3D textures, 
often referred to as volumetric or solid 
textures. Volumetric texture differ from 
conventional  2D textures  in  that  they 
do  not  require  bindings  to  geometry 
coordinates  but  allow  objects  to  be 
virtually carved from the texture as if 
they  were  a  solid  block  [24].  The 
example shown in  Figure 12 shows a 
vase carved out of a volumetric marble 
texture created using Perlin noise. The 
texture manages to replicate  the veins 
running  through  the  marble  and 
achieves a higher level of realism than 
is  possible  using  2D  texturing 
techniques.

Volumetric textures are computationally expensive to render, but 
the  real  barrier  for  their  widespread  use  is  their  memory  and 

Figure 12: Marble vase 
textured with a Perlin 
procedural volumetric 

texture[24]



storage  requirements.  Compression  such  as  S3TC  can  partly 
alleviate the memory problems of 3D textures but do not go far 
enough. Perlin Noise requires minute storage due to its procedural 
nature thus removing any storage burden, and can even by used to 
render  volumetric  textures  in  real-time  using  the  pixel-shader 
hardware on recent GPU's [21].

As  a  procedural  generation  technique  Perlin  Noise  provides  a 
comprehensive  set  of  benefits.  Parametric  control  provides  the 
developer with flexibility to control the output through high level 
parameters. Reproducible geometry and textures created using the 
algorithm have minimal storage requirements,  can be generated 
efficiently  and  can  be  defined  in  the  terms  of  a  few  simple 
parameters.  Textures  of  any  size  and  detail  can  be  produced 
providing an innate level of detail. The output created is tile-able, 
allowing seamless joins suitable for techniques like repeating and 
layering which are common place in multi-texturing. It can also 
be  used  as  method  to  enable  real-time  volumetric  textures  on 
modern graphics hardware.[21] Perlin Noise has proven to be one 
of the most useful procedural techniques and is beneficial in wide 
range of computer graphics applications.

 2.4 Tiling
Tiling is  one of  the  most  basic  procedural  techniques  and has 
traditionally  been  applied  in  game  development.  It  is  used  in 
many classic games including titles such as Sonic, Mario and R-
Type. Originally tiling was used by creating small sections of 2D 
graphics that could be repeated on screen and assembled together 
to  create  the  virtual  world.  Games  such  as  the  Shoot  Em Up 
Construction  Kit  [4] released  in  1987  by  Sensible  Software 
allowed the user to construct and edit game maps using a library 
of tiles and a simple interface. 

More recently tiling techniques have evolved and are used in the 
form  of  multi-texturing to  create  highly  detailed  and  varied 
textures from layers of base textures. New materials are created 
by combining a set of detailed textures, colour maps and blending 
maps. Using this technique terrain can be procedurally textured by 
applying several layers of detailed tile-able textures.[9] Examples 
of texture layers could include rock, grass, sand and snow. These 
texture layers can be combined with varying degrees of influence 
on the final texture. Textures are applied to the terrain according a 
variety of specified parameters, they can be selected according to 
height,  slope  or  specified  explicitly  using  an  image  map.  This 
solution allows vast  areas to be textured in detail  which is not 
possible using a single high resolution texture.

Figure 13: Warcraft® III uses stochastic information to procedurally 
generate Textures. © 2002 Blizzard Entertainment

Extended algorithms exist that use stochastic information such as 
probability  distribution maps to  procedurally texture  landscape. 
An  image  map  for  the  terrain  area  is  supplied  that  stores  the 
probability of using various tiles. Constraints can be specified to 
state which tiles can be joined under what conditions and whether 
they may be joined directly or require transitional tiles. Using a 
pseudo random function thousands of  different  permutations  of 
worlds are possible from a single probability map. Each possible 
world can be stored and recalled by simply taking note of the seed 
used to create the world [14]. 

Tiling  systems  provide  several  advantages  for  graphics 
applications.  Vast  and  detailed  landscape  or  terrain  for  virtual 
worlds can be created from stochastic information and small set of 
texture  tiles.  These  maps  and  game worlds  can  then  be  easily 
distributed for on-line gaming which is of particularly useful for 
massively  multi-player  on-line  role-playing  games  (MMORG) 
and other on-line applications where game resources are shared. 
Storage and memory requirements are minimised so it is possible 
to optimally store and render worlds of vast dimensions in real-
time on commodity hardware. Tiling is a good example of how a 
simple  procedural  technique  can  be  applied  and  extended  to 
provide benefits for graphics applications.

 2.5 Voronoi Texture Basis
Voronoi diagrams were demonstrated as a method of procedural 
generation by S.  Worley in his paper titled 'A Cellular  Texture 
Basis Function', in which he detailed an algorithm that partitions 
space  into  a  random  array  of  cells  creating  cellular  looking 
textures.  The  technique  was  devised  to  complement  existing 
procedural techniques such as Perlin Noise and provide a method 
of procedural generation for cellular surfaces such as skin or bark. 
Voronoi  diagrams  have  long  preceded  their  application  in 
procedural generation and have traditionally been used in a wide 
range  of  scientific  applications  including  spacial  analysis, 
planning,  urban  settlement  analysis,  geology,  robotics  and 
ecology.

Figure 14: Voronoi Diagram with coloured cells 

A Voronoi diagram is the decomposition of some metric space 
determined by distances to a specified discrete set of objects in the 
space.   Figure  14 shows an  area  partitioned  into  cell  by lines 
which are plotted using the points on the map. Each boundary line 
is  positioned  equidistant  between  each  pair  of  neighbouring 
points. The resulting Voronoi diagram is a result of the position of 
the  original  points.  A  wide  range  of  cellular  patterns  can  be 
created by using different configurations to place the points used 
to  create  the  diagram,  also  this  data  can  be  interpreted  and 
rendered in many different ways for different effects. 



Figure 15: Photo-realistic surfaces procedurally created using 
Worely's cellular basis algorithm. [3][17]

The  Worley  algorithm  achieves  effective  abstraction  for  the 
generation  of  cellular  surfaces  by  providing  a  small  set  of 
parameters termed the 'Worley constants' that can control of the 
algorithms operation yet  allow great  variance  of  the  output.[3] 
Natural surfaces such as paper, skin, cobblestone, tree bark and 
sun baked mud are prime targets for this algorithm and can be 
recreated effectively with little input data required. [17] Figure 15 
shows  examples  of  Worleys  algorithm applied  to  procedurally 
generate  natural  textures.  The  algorithm  has  been  used 
successfully in procedural generation creating a variety of richly 
detailed cellular surfaces which can be concisely defined in the 
terms of a few simple parameters.

 3 Procedural City Generation
The  procedural  methods  outlined  in  the  previous  section  have 
largely  been  applied  to  the  generation  of  natural  objects  and 
textures. Only recently have researchers turned their attention to 
their  application  in  the  context  of  generation  of  man-made 
phenomena such as an urban area. In this section we shall review 
and  evaluate  research  that  has  been  carried  out  on  procedural 
generation of cities. City generation is achieved through a series 
of stages that each use a number of techniques to create roads, 
lots, building structure and building faces. 

Road networks  are  a  key aspect  of  city character  and identity. 
Road  networks  are  difficult  to  generalize  since  they  are  an 
interwoven component of a complex system. When viewing road 
networks from a map or city plan a number of patterns can be 
observed.  It  is  these  patterns  that  are  key  for  procedural 
generation as they encode the structure of the road network. There 
are  numerous road network patterns  deployed  in  cities  ranging 
from the tightly structured grid plan network with perpendicular 
roads  in  a  regular  chequerboard  structure  to  the  hierarchical 
network with sprawling secondary and tertiary roads feeding into 
arterial roads in a branch like system. The patterns applied within 
a  city  are  a  result  of  numerous  factors  including  location, 
geography, cultural influences, planning trends, etc. Cities can be 
categorised by the road patterns they contain: modern US cities 
like New York are arranged in a chequerboard or raster pattern, 
some European cities  like  Paris  are  structured with  a  radial  or 
concentric pattern most evident.  However most cities contain a 
number of patterns, with different patterns prevalent in different 
regions or neighbourhoods within the city. [33][31]

City  buildings  are  difficult  objects  to  procedurally  generate 
because of their individuality. The buildings present in a modern 
city display a diverse range in both function and style. Buildings 
as functional  units serve a specific purpose or role within  each 
neighbourhood, borough, district and city. The number of roles 
for  buildings  are  many  and  combined  with  the  geographic 
composition within a city make for an extremely complex system. 
Such  a  complex  system is  difficult  to  model,  but  a  simplified 
solution can be used, similar to that used in statistical analysis, 
that  uses  classes  or  groups  to  model  building  function.  Usage 
groups such as commercial, residential and industrial can be used 
as select  generalizations  for the numerous building roles  and a 

simple mechanism for modelling function within cities. The style 
of a building and in particular its geometry and materials are often 
the result of numerous architectural and cultural influences. Such 
a  complex form is  difficult  to  model  and an approximation or 
substantially reduced model is needed to limit the complexity of 
the generation system.

To effectively evaluate the generation systems we have identified 
a number key criteria:

1. Realism – Does the generated city look like a real city?

2. Scale – Is the urban landscape at the scale of a city?

3. Variation –  Can  the  city  generation  system  recreate  the 
variation of road networks and buildings found in real cities or 
is the output homogeneous?

4. Input – What is the minimal input data required to generate 
basic  output  and  what  input  data  is  required  for  the  best 
output?

5. Efficiency – How long does it  take to create the examples 
shown  and  on  what  hardware  are  they  generated?  How 
computational efficient is the algorithm?

6. Control – Can the user influence city generation and receive 
immediate feedback on their actions? Is there a tactile intuitive 
method of  control  available or is  the control  restricted?  To 
what degree can the user influence the generation results?

7. Real-time – Can the generated city be viewed in real-time? 
Are  there  any  rendering  optimisation  techniques  applied  to 
enable real-time exploration?

An overview  will  be  presented  of  each  of  the  city  generation 
systems  and  an  insight  provided  into  the  functioning  of  the 
techniques and algorithms applied in the systems. Following each 
outline  of  the  system  we  discuss  and  evaluate  each  system 
according  to  our  criteria.  Realism,  Scale,  Variation,  Input, 
Efficiency, Control and Real-time optimisations.



 3.1 Grid Layout & Geometric Primitives
Stefan Greuter et al.[19][13][8] outline a solution to procedurally 
generate a city in real-time. The techniques applied to generate the 
city are discussed in a number of papers and demonstrated in a 
virtual city application titled  Undiscovered City. The application 
creates a road network using a simple grid layout upon which it 
can  place  buildings  generated  using  a  combination  of  simple 
geometric  primitives.  The  research  is  specifically  targeted  for 
real-time applications and the Undiscovered City serves as a proof 
of concept running in real-time at interactive frame rates.

Road Network: Grid Layout
The roads of the city are created in the pattern of a uniform grid in 
a similar fashion to the centre of a modern planned American city 
like  New York.  The  grid  is  regular  and  size  of  each  block  is 
constant but can be adjusted globally.

Figure 16: Screen shot at street level in the Undiscovered City demo

Figure 17: Screen shot from the Neverland demo

The grid based road network generation has been improved in the 
Neverland demo, a more recent work from Greuter et al., shown 
in   Figure 17. This system extends some of the buildings over 
more than one grid block creating a more disjointed road network 
and giving the city a more realistic appearance. A paper detailing 
the Neverland demo has yet to be published.

Buildings: Geometric Primitives
The building generation system uses the location of buildings in 
the form of a grid coordinates as a seed for building generation. 
The  appearance  of  each  building  is  determined  by  this  seed 
including properties such as height, width and number of floors. 
Generating  buildings  using  a  similar  set  of  numbers  such  as 
neighbouring  grid  coordinates  can  result  in  similar  looking 
buildings,  so  to  overcome  this  a  hashing  function  shown  in 
  Figure  18 is  implemented  in  order  to  provide  more  random 
distribution.

Figure 18: Grid Layout Coordinates & Hashing [13]

Building geometry is generated using the concept of combining 
geometric  primitives  to  form  building  sections.  Each  building 
section is constructed using a different floor plan. The top most 
section of buildings are created by extruding a three dimensional 
volume from the most basic of floor plans, composed from only a 
few  primitive  shapes.  In  subsequent  sections  below,  another 
primitive shape is added to the previous floor plan and a three 
dimensional volume is extruded in the same fashion.   Figure 19 
illustrates how the creation of consecutive sections are combined 
to form the complete geometric model of a building.   Figure 20 
shows the generated buildings with their textured faces which are 
not  procedurally  generated  but  are  selected  from  a  set  of  10 
building window textures.

Figure 19: Floor Plan Generation [13]

Figure 20: Screen shot from the Undiscovered City demo

The Undiscovered  City is 
designed  with  real-time 
applications  in  mind  and 
implements  optimisations 
such as a geometry caching 
and  view  frustum  culling. 
The  culling  technique, 
referred to as View Frustum 
Filling  [13],  renders  only 
the buildings visible within 
the view frustum as  shown 
by   Figure  21.  By loading 
and rendering a reduced set of buildings the amount of memory 
required to  store the scene and the  graphical  processing power 
required to render the scene are minimised enabling the real-time 
rendering of  a large data  set  like  a city.  The regular  grid road 
network  allows  easy detection  of  building  visibility  within  the 
view  frustum  and  hence  provides  a  computationally  efficient 
method to cull superfluous buildings from view. 

In addition to culling building geometry, a building cache is also 
implemented. Buildings are generated in advance and defined as 
OpenGL display lists that can be stored in the building cache. The 
cache  employs  a  LRU(least  recently  used)  algorithm:  recently 

Figure 21: View frustum filling. [13]



accessed buildings are kept in the cache while older less recently 
accessed  items  are  replaced.  As  a  result  of  using  the  building 
cache  memory  use  is  optimized  and  buildings  can  be  recalled 
from cache for display an order of magnitude faster(up to 8x) than 
they can be generated from scratch.

Discussion
1. Realism:  The single  grid pattern used does not  reflect  real 

cities that are constructed from a number of patterns and the 
resulting  road  network appears  artificial  and  homogeneous. 
Buildings  appear  angular  and  modern  and  are  somewhat 
realistic but unconvincing. Simple windowed  faces are used 
and the buildings are not geometrically detailed. 

2. Scale: The grid layout system can create road networks on a 
very large scale and is limited only by the size of the integer 
based coordinates. At 232 cells wide, the size is not a practical 
restriction for city generation.

3. Variation: The road network provides little variation, a single 
regular grid pattern is used and only the grid spacing can vary 
from city to city. The grid system is required for the real-time 
optimizations  and  so  is  largely  inflexible.  Only  a  single 
building  type  is  constructed,  an  office  skyscraper  with  10 
different  window  textures,  no  other  type  of  building  is 
supported.  Although  the  geometry  for  each  building  is 
different the amount of variation insufficient to emulate a real 
city.

4. Input: No input maps or geo-statistical data is required. No 
external  image  maps  are  required  and  the  application  is 
standalone.

5. Efficiency: Road network and building generation take place 
in real-time and figures are provided for the generation and 
rendering of the Undiscovered City.

6. Control: Grid spacing can be adjusted using short-cut keys in 
the application and the changes can be viewed in real-time. 
The  building  generation  process  is  not  interactive  and  all 
buildings are generated using a random seed created using a 
set of building coordinates from the road grid network.

7. Real-time:  The system is designed for real-time applications 
and  can  render  views  of  large  scale  cities  in  real-time  on 
commodity  hardware  from 2003 at  interactive  frame  rates. 
[Performance  for  numbers  of  buildings  being  displayed  on 
screen:  200 buildings @60fps,  500 buildings @20fps,  1000 
buildings @5fps].

 3.2 L-systems
Parish and Müller[23] presented the  CityEngine in a paper titled 
Procedural  Modeling  of  Cities at  SIGGRAPH  2001.  The 
CityEngine  consists  of  a suite  of  components  including  road 
generation, building construction and building  face creation that 
unite to form a pipeline for city generation. L-systems are selected 
as the key technique for procedural generation in the CityEngine. 
Lindenmayer-systems  have  traditionally  been  used  to  model 
natural  phenomena  but  are  also  suitable  for  the  generation  of 
cities due to their  concise  nature,  computational  efficiency and 
data amplification properties. 

Road Network: L-systems
L-systems have been used to model natural phenomena and the 
generation of plants and other branching structures provide some 
similarities to the generation of road networks.  The CityEngine 
uses  an  extended  form  of  L-systems  titled  Self-sensitive  L-
systems  to  construct  road  networks  in  a  manner  which  takes 
existing growth into account.

Input  is  taken  in  the  form  of  2D  image  maps.  Geographical 
information  on  elevation,  vegetation  and  water  boundaries  is 
required and additional socio statistical image maps can also be 
included specifying information such as population density, land 
usage,  street  patterns  and  maximum  building  heights.  A  road 
network generation application,  shown in Figure 23,  is  used to 
manage the generation of roads and allow the operating user to 
specify  extra  parameters  such  as  the  smoothing  angle  of  road 
network  edges,  road  width,  etc.  Although  only  a  geographical 
input map is required the examples included in the paper, such as 
Virtual Manhattan in    Figure 27, utilize a number of different 
input maps.

Road generation is accomplished through the use of two rule sets: 
the  Global Goals and the  Local Constraints. Road segments are 
initially plotted according to the Global Goals which are similar to 
the goals that a city designer may have. These tentative plans are 
then refined by the Local Constraints which  reflect the practical 
constraints  of the real  world  and the  state  of  the existing road 
network.

Global Goals

• There are two different  types  of roads:  highways  or major 
roads  connect  population  density  centres which  can  be 
identified from the population density map supplied at input, 
small roads connect to the nearest highway.

• Streets follow some super imposed geometric pattern.
• Streets follow the path of least elevation.

Local Constraints

• Road  segments  are  pruned  to  fit  inside  a  legal  area:  line 
segments extending into water are pruned.

• Roads are rotated to fit inside a legal area: a road to the coast 
bends around the coastline like a coastal road.

• Highways  are  allowed to cross  an illegal  area  of a  certain 
distance: a highway approaching a limited span of water will 
cross over it like a bridge.

• Roads  segments  are  checked  to  see  if  they  intersect  with 
existing roads or if they come within a certain distance of an 
existing road junction:  Figure 22 shows how proposed road 
segments  are  modified  to  satisfy  the  self-sensitive  rules.



Figure 22: Self-sensitive road L-system [23]

Figure 23: CityEngine GUI displaying Virtual Manhattan after 100 steps. 
[2][23]

Buildings: L-systems
The  CityEngine  constructs  buildings  on  the  road  network  in  a 
series  of  distinct  stages:  define  building  allotments,  create 
building geometry and generate textured faces. To define building 
allotments  the  CityEngine  utilizes  data  from the  previous  road 
network  generation  stage.  Figure  24 outlines  the  stages  of 
allotment  generation.  Allotments  or  lots  are  calculated  by  first 
extracting blocks from the road network using the roads of the 
network  as  the  dividing borders.  Each basic  extracted block is 
then  divided  into  a  series  of  potential  lots  via  randomized 
subdivision. Lots that are too small or have no immediate street 
access  are  culled  and removed from the system.  The final  lots 
generated by the CityEngine are shown in the right-most image of 
Figure 24 and appear both varied and practical.

Figure 24: Lot Division Stages [23]

Building geometry is generated through the use of a parametric L-
system.  Several  different  building  styles  are  implemented 
including: skyscrapers, commercial and residential with each type 
using a different set of L-system productions. The building type is 
determined from a zone map which can be passed in as an image 
map input. 

Figure 25: L-System building refinement from bounding box of the 

Empire State Building [2]

The initial state or axiom of the building L-system is a bounding 
box generated from the lot footprint and a building height image 
map if available. L-system operations consist of transformations 
(scale and move), extrusions, branching and termination, and the 
use  of  geometric  templates  for  roofs,  antennae,  etc.  L-systems 
allow  for  the  addition  of  more  productions  and  provide  an 
extensible  solution.  A  basic  level  of  detail  implementation  is 
possible  since  each  iteration  of  the  building  L-system  is  a 
refinement of a basic building bounding box as shown above in 
 Figure 25.

Figure 26: Building face construction [23]

Building  faces are  created  procedurally  by  generating  textures 
using an over-laid series of grid-like structures. Several layers of 
grid-like structures are used with  functions that  define how the 
layers are combined. The functions dictate which cells from what 
layer are selected to create the final face and can use conditional 
and statistical information to select cells. Cells typically contain 
doors  or  windows  but  can  contain  any  building  face  feature. 
Shown in   Figure 26 is the construction of a face: the red layer 
influences  the  selection  of  cells  from  the  green  layer.  The 
resulting face is a conditional combination of multiple layers.

Figure 27: CityEngine - Virtual Manhattan – Maya render

The CityEngine produces data that can be imported into Maya, a 
commercial 3D package, for final rendering. The sample shown in
 Figure 27 illustrates such a rendering from Maya, in this case a 
showcase of Virtual Manhattan.

Figure 28: CityEngine - Virtual Manhattan – DV/reality

A  real-time  implementation  is  available  utilizing  DV/reality 
software from Dimension. DV/reality is a large scale visualisation 
tool designed to run on super computers and distributed rendering 



applications.  There  are  no real-time rendering  features  such as 
level of detail or geometry culling discussed and from the screen-
shot of DV/reality in action in Figure 28 it is clearly evident that a 
reduced complexity  model  is  being displayed.  (Notice  how the 
buildings appear more similar to the left most image of  Figure 25 
in contrast to the right).

Discussion
1. Realism:  The CityEngine can create a complex and detailed 

road  network  using  extended  L-systems.  Figures  23 
demonstrates the generation of a realistic road network,  but 
utilizes real statistical data making the generative capability of 
the  system  difficult  to  assess. The  blocks  from  the  road 
network  are  divided  into  realistic  and  practical  lots  upon 
which  buildings  can  be  constructed.  L-system  building 
generation  provides  an  effective  method  of  generating  a 
realistic cityscape although the resulting buildings are basic. 
Several  different  types  of  buildings  including  skyscrapers, 
commercial and residential buildings can be created and green 
areas  are  also  displayed.  Overall  a  good  visual  balance  is 
achieved with practical positioning.

2. Scale: Scale does not appear to be an limiting factor for the 
system and is possibly restricted only by the size of the input 
data maps.

3. Variation: a good range of road networks can be created and 
examples  of  different  generated  cities  are  shown including 
Paris  –  Circular,  New  York  –  Grid  and  San  Francisco  – 
Terrain  wrapping.  Buildings  vary in  shape and scale  and a 
range of building types are catered for, but only limited range 
of style is demonstrated. In Virtual Manhattan a convincing 
clone of New York is shown but it may be more difficult to 
generate  other  cities  where  a  different  architectural  style 
would be required.

4. Input:  the  minimum  input  required  is  a  geography  map 
however  all  of  the  samples  shown  utilize  numerous  input 
maps and include statistical data from a real world cities. A 
dependence on real-world data would require the acquisition 
of geo-statistical data to begin using the system which is not 
desirable. Also, from a practical point of view the system is 
more  difficult  to  evaluate  since  it  is  difficult  to  determine 
which patterns are created by the L-systems and which are 
created as a result of the input data. Although only one input 
map  is  required,  all  of  the  samples  shown  in  [23] utilize 
numerous maps to create realistic output like that illustrated in
 Figure 27

5. Efficiency: Road  network  generation  is  very  efficient,  the 
large road network of the Manhattan sample shown in  Figure
27 is  created  in  under  10  seconds.  The  next  stage  of 
generation the building stage takes longer to complete: Virtual 
Manhattan requires approximately 10 minutes to  sub-divide 
the  road  network  into  lots,  construct  buildings  and  create 
textured  faces.  It  is  important  to  note  that  although  the 
generation time is documented the time required for Maya to 
render Virtual Manhattan in  is not disclosed and would likely 
take substantially longer than both combined.

6. Control: It is unclear how much user interaction is required 
and  no  interactive  features  are  specifically  documented. L-
systems are by their very nature iterative and it appears that 
the number of iterations used by the system to generate output 
of an acceptable realism and detail is determined by the user 
trying different values on a trial and error basis. Other values 
are  also  specified  manually  such as  the  angle  of  deviation. 
Control  of  building generation  appears to be limited to the 

numerous image maps that can be passed as input. 

7. Real-time: A real-time demonstration is available using the 
DV/Reality software  shown  in Figure  28 that  displays  a 
simplified version of Virtual Manhattan.  DV/Reality[DVR] is 
a  visualisation  tool  designed to  provide real-time rendering 
though  the  use  of  high  powered graphics  workstations  and 
distributed  rendering. No  documentation  on  any  real-time 
features in the CityEngine are provided and without features 
like geometry culling or LOD real-time rendering applications 
like gaming are not possible. It may be possible to easily add 
some  optimizations  such  as  a  simple  level  of  detail 
implementation  based  on  the  principle  that  each  L-system 
iteration  produces  a  more  detailed  building  version refined 
from a simple cuboid primitive as illustrated in  Figure 25. 

 3.3 Agent Based Simulation
Watson et  al.  [12] apply an agent  based technique to  generate 
cities in their solution titled  CityBuilder. The system is built on 
the  NetLogoTM platform  which  is  a  multi-agent  programmable 
modelling environment based on the Logo programming language 
and  is  designed  to  provide  users  with  a  platform  to  explore 
emergent  phenomena.  The  city  generation  is  implemented  by 
simulating cities using a set of agents that can model specific city 
entities such as developers, planning authorities and road builders. 
The  CityBuilder system models not  only the  road network and 
buildings but also simulates the growth and development of the 
city over time.

Road Network: Agent Based Simulation
Roads  are  created  from  road  segments  that  are  assembled 
according to a grid pattern. Deviation from the pattern is allowed 
and can be specified via a parameter. A deviation value of zero 
will result in a strictly uniform grid like road network, a deviation 
value  near  one  would  result  in  an  organic  like  network.  The 
interconnectivity of the network can also be altered via constants 
that  dictate  the  road  density  and  the  distance  between  road 
intersections.

Figure 29: NetLogoTM City Builder Interface [12]

Input in the form of a terrain height map is required along with a 
specified water level to determine the legal area in which roads 
and  buildings  can  be  placed.  Extra  parameters  such  as  road 
density,  grid  spacing  and  deviation  from grid  can  be  adjusted 



using sliders  in  the  interface  shown in   Figure  29 to  alter  the 
behaviour  of  the  agents.  Additionally  users  can specify certain 
parameter values for specific areas by painting on the map using a 
brush similar to that in a simple paint application. 

The road segments are created by two types of agents – extenders 
and connectors:

• Extenders roam around terrain near to existing developments 
to search for land that is not serviced by the road network. 
Once that  area  of  land has  been discovered,  it  is  assessed 
according  to  road  density,  proximity  to  existing  junctions, 
and  deviation  from  the  start  point.  Roads  follow  parcel 
boundaries and try not to make large changes in elevation. 

• Connectors roam over  the  existing road network sampling 
the distance taken to travel to a point within a given radius 
using  a  breadth  first  search  of  the  road  network.  If  this 
distance  is  too  long  the  connector  will  propose  a  road 
segment  between the  two points,  the  proposed  segment  is 
subject to the same checks as extenders.

a) b) c) 

Figure 30: Example output of differing city structures: a) Gridded, b) 
Organic & c) Mixed Gridded and Organic [12]

Road  networks  can  be  viewed  evolving  in  real-time,  and  the 
examples shown were created in 15 to 30 minutes. Figure 15c) 
shows one of the main strengths of the agent based system by 
effectively blending between raster and suburban road styles.

Buildings: Agent Based Simulation
The generation of land usage for buildings is completed via the 
interaction of a number of agents but is primarily due to the work 
of Developer agents. Developer agents perform the role of urban 
developers  and  have  similar  goals:  buy  land,  request  planning 
permission, build and sell. A rectangular grid of patches represent 
the world and each patch may be occupied by a building or road. 
Patches  are  grouped  into  parcels  under  the  ownership  of  the 
building  agent.  The  building  agent  determines  the  zoning 
information of each parcel and tracks attributes of the buildings.

Figure 31: Development Sequence. Yellow is residential, red is 
commercial, blue is industrial. Roads are grey. [12]

Three  distinct  developer  types  are  defined:  residential, 
commercial  and  industrial.  All  developers  seek  to  increase  the 
value of their land and each developer type evaluates the value of 
land differently and uses a different set of rules to complete its 
goals. For example: residential developers seek land near the less 
busy  areas  of  the  road  network  in  contrast  to  commercial 

developers who look for the busiest sections of the road network. 
Property  is  reviewed  and  a  site  is  chosen.  A proposal  is  then 
prepared that satisfies the clients needs and meets and the city's 
restrictions. The proposal must then be reviewed by the city.  A 
developers'  proposal  is  only  successful  if  it  passes  the  city 
regulations and makes a net positive impact on the community by 
providing a service or increasing the value of the land. After this 
process is complete the developer agent starts again looking for 
more property. Shown in Figure 31 are three snapshot images of 
the evolution of a small city from left to right.

The  CityBuilder system creates a road network and defines land 
use that  is  then used to  determine  building types  but  does  not 
generate actual building geometry and textures. The visualization 
of the city buildings is not a feature of the system but takes place 
externally in the proprietary SimCity game engine.

Discussion
1. Realism: The road network is appears realistic and has the 

ability  to  effectively  transition  between  different  road 
patterns, particularly the transition from central urban areas to 
less dense suburban areas. No buildings are generated but the 
land  usage  map  appears  realistic  resembling  real  statistical 
data similar to that showcased in the chil.us [1] project. 

2. Scale: The  output  created  from  the  system  and  example 
shown in Figure 31 is limited in scale and is of a comparable 
scale to that of a village or small town rather than a city. 

3. Variation:  Different  zones  are  supported  with  commercial 
zones  using  rigid  block  like  road structures  and residential 
areas using sprawling roads.  Three different land usage and 
building  types  are  defined  commercial,  residential  and 
industrial. It is impossible to judge the variation achieved by 
those  categories  as  the  visualisation  is  performed  by  the 
SimCity engine which is outside of the system.

4. Input: A  terrain  height  map  and  a  water  level  input  are 
required to determine the legal areas in which buildings can 
be placed. Other input can be specified by the user through the 
interactive application.

5. Efficiency: CityBuilder models not only the structure of a city 
but also its evolution and as a result of the added complexity 
the  algorithm  is  computationally  intensive  and  time 
consuming. A city of only limited scale similar to a village 
can be generated over a period of approximately 15 minutes 
not  including  the  generation  of  any  building  geometry  or 
textures. 

6. Control:  An innovative feature is available in the form of a 
paint tool that can be used to paint parameter values on the 
map.  Numerical  parameters  such  as  road  concentration, 
deviation  and  scale  can  be  specified  via  an  interactive 
application using the various sliders and widgets of the GUI. 

7. Real-time:  There are no real-time considerations or even a 
three dimensional model of the city. Visualization is provided 
via an external system, the SimCity engine, that  uses a flat 
bitmap tile based game view.

The system could be easily expanded but with  an algorithm of 
high computational complexity and it is not suited for procedural 
generation and could be more suitable for simulation applications.



 3.4 Template Based Generation
Sun, Baciu et al propose an alternative approach to creating cities 
in  their  2002  paper  Template-Based  Generation  of  Road  
Networks for City Modeling through the  use  of  a  collection of 
simple  templates  and  a  population  adaptive  template  [18].  The 
basic concept  of  the system is that  a road network template is 
applied  to  a  geographic  map  as  a  plan  and then  the  roads  are 
deformed subject to local constraints.

Road Network: Template Based Generation
Several  inputs  are  required  in  the  form of  2D image  maps.  A 
colour  image map which  contains  geographical  information on 
land/water/vegetation is required. A grey-scale height map image 
to  specify  elevation  is  required.  A  population  density  map  is 
required  for  the  population-based  template  and  is  used  to 
determine the varying road network density.

Population 
based 

Radial Mode Raster Mode Mixed Mode

Figure 32: Road Patterns [18]

The population-based template is implemented using a Voronoi 
diagram. A road system is created that  is  representative  of  the 
population  distribution.  Road  networks  are  suitably  dense  in 
highly populated areas and sparse in less populated areas. This is 
made possible by extracting density points from the population 
density  input  map  and  using  the  points  as  input  sites  for  the 
Voronoi diagram. The edges or cell boundaries from the resulting 
diagram are used to create the interconnected road network. The 
other templates use procedural patterns to create the road network. 
The Raster Mode, Radial Mode and Mixed Mode templates serve 
as simplistic growing patterns, with roads starting from a defined 
centre point and growing in an iterative process toward the edges 
of a bounded area. The Mixed Mode is simply a compound of one 
or more of the other basic templates.

Templates define only the desired road pattern and just as road 
planners must respond to practical constraints, so must the pattern. 
Roads  deviate  from  the  supplied  pattern  changing  direction 
rapidly to avoid obstacles such as water and curve gradually to 
avoid large changes in elevation. Roads are created in short steps, 
at  each  step  the  system  emits  several  fixed  length  radials  and 
selects the radial with the least variation in elevation that is in a 
legal zone. In the case of a tie between two radials the path of 
least  deviation from the original  path  is  chosen.  The angles  at 
which the radials are drawn is restricted by a freedom factor, F, 
which limits the maximum angle of deviation for each radial. The 
final  shape  of  the  road  is  a  result  of  terrain  deviation and  the 
selected pattern is followed only as strictly as the freedom factor 
dictates it to be followed.

Figure 33: Lot Division Stages [18]

Figure 34: Results clockwise: Population-Based Template, Radial Mode, 
Raster Mode and Mixed Mode. [18]

Discussion
1. Realism: The applied template technique reflects the patterns 

found in cities but the results do not achieve the complexity 
and scale of real city road networks. The compound pattern 
aims  to  overcome  the  simplicity  of  the  single  patterns  by 
combining a  number  of  patterns,  similar  to  a  real  city,  but 
only combines two which is insufficient for the complexity of 
modern cities.

2. Scale: The examples shown in Figure 34 demonstrate limited 
complexity and are insufficient in scale to be classed as city 
scale road networks.

3. Variation:  A choice of four templates is  demonstrated and 
each can be deformed by the random terrain providing limited 
though varied output.

4. Input: Several  inputs  are  required  including  geo-statistical 
data such as terrain height maps, a standard geographic map 
and  a  population  density  maps  for  the  population  based 
template.

5. Efficiency: No information is provided on the performance of 
the generation process.

6. Control:  A reliance on statistical data and no indication of 
any user  interaction to control  the road network generation 
would imply that this solution is very rigid and inflexible.

7. Real-time:  No real-time features or rendering optimisations 
are discussed.



 3.5 Split Grammars
The  Instant  Architecture solution presented by Wonka et  al.  at 
Siggraph  2003  describes  the  generation  of  realistic  buildings 
through the  use  of  a  new type  of  formal  grammar  called  split 
grammars.  These grammars  are  based on the  concept  of  shape 
[11].

Buildings: Split Grammars
Split  grammars  are  based  upon  the  previous  research  and 
principles  of  shape grammars  pioneered by Stiny[30].  A shape 
grammar is a formal grammar not unlike L-systems but it is based 
on  the  fundamental  primitive  of  shapes  rather  than  letters  or 
symbols. Rules or productions map a shape or number of shapes 
to be be replaced by another shape or number of shapes. An initial 
set of shapes is supplied to start with and the rules are applied in 
an iterative manner.

The basic building blocks of the system and the objects that the 
grammar manipulates are simple attributed, parametrized, labelled 
shapes  called  basic  shapes.  A  large  number  of  rules  or 
productions  are  required  to  transform  the  shapes.  For  the 
examples shown in the paper a database of around 200 rules and 
40 attributes was assembled. Figure 30 shows an initial state and 
simple set of sample rules.

Figure 35: An example of split grammar. [11]

An initial  starting state is  provided and then transformed in an 
iterative  process  using  rules  from the database.  The rules  split 
buildings  into  faces,  faces  into  structural  sections,  structural 
sections into components such as windows and so on, as shown in 
in  Figure  30 with  the  end  result  shown  of  the  completed 
derivation in  Figure 16.

Figure 36: Completed derivation of the grammar in Figure 30 [11]

Attributes assigned to shapes are propagated from the initial state 
down through the system. The attributes store information about 
the  building  like  its  symmetry,  age,  use  and  visual  properties. 
These are later used to render the building but are also used to 
help match transformation rules and find relevant replacements. In 
addition,  a  control  grammar  is  applied  that  can  change  the 
attributes  of  basic  shapes  in  order  to  apply  spacial  design 
concepts, such as setting the first floor of a building to be a shop 

or applying a vertical detail to a column of shapes. The resulting 
building  models  produced  by  the  instant  architecture  system 
contain  detailed  local  details  such  as  window  sills  but  also 
distinctive building features such as vertical details on the edges 
of buildings.

Figure 37: Screen shot of Instant Architecture [11]

Discussion
1. Realism: The split grammar technique produces very realistic 

buildings even going as far as to effectively recreate different 
styles of architecture.

2. Scale: The examples shown in Instant Architecture are limited 
in  scale,  they  demonstrate  the  strengths  of  the  system  by 
creating a small group of buildings in a town square or centre. 
A high level  of variation is shown in the examples but the 
number of buildings is limited and is not of city scale.

3. Variation:  Building style  varies greatly helping to produce 
very  realistic  output,  however  it  is  not  clear  how  many 
different buildings types can be produced.

4. Input: The  system  requires  substantial  initial  input  with 
samples like those shown in   Figure 37 requiring a database 
containing  approx.  200  rules  and  40  attributes,  and  took 
around two weeks to assemble. From this database a variety 
of buildings of different styles could be created and the data 
could  be  distributed  with  the  system without  requiring  the 
user to assemble their own dataset.

5. Efficiency: The algorithm although complex is quite efficient 
creating  buildings  of  up  to  10,000  polygons  in  around  3 
seconds on an Intel Pentium 4 at 2Ghz.

6. Control:  No interactive editor or GUI is described but the 
split grammar rules can be edited in the database manually. 
This process is described as non trivial and requires a level of 
expertise and experience using the split  grammars.  It  could 
well be a barrier to extending the system. There may also be 
constraints on the size of the system and the number of rules 
that  it  can  manage  with  a  reservation  expressed  that  some 
derived designs may not even make sense if more rules are 
added. 

7. Real-time:  The detailed buildings that  the system produces 
can be explored in real-time however the number of buildings 
on display at any one time is limited. It is clearly a limit of the 
system  with  such  a  high  polygon  count.  Level  of  detail 
support  would  be  essential  to  use  the  system for  real-time 
applications.

The Instant  Architecture solution produces realistic and detailed 
buildings  but  may  require  a  level  of  expertise  to  operate  that 
restrict it to an academic audience.
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 4 Future Research
In Section 3 we reviewed previous research into the procedural 
generation of cities. It is important for us to recognise the areas 
that  can  be  improved  in  this  research  and  to  identify  suitable 
candidates for further research. To evaluate the existing research 
we  studied  each  city  generation  technique  and  assessed  the 
systems  performance  according  to  a  common  set  of  criteria: 
Realism, Scale, Variation, Inputs, Efficiency, Control, Real-time 
provisions.  After  completing  this  analysis,  we  have  found  that 
previous research efforts have made good progress on a number 
of difficult goals by achieving a high level of variation, realism 
and  scale.  However,  city  generation  research  is  by  no  means 
complete  and  we  identified  a  number  of  areas  which  can  be 
improved on by future research.

An accessible city generation system is difficult if the operation of 
the system requires a high level of expertise or if complex input 
such as geo-statistical data is a prerequisite to using the system. 
The  City  Engine  system  [23] is  capable  of  producing  visually 
sound results but the road network and buildings are generated 
using a complex set of rules, images maps and geo-statistical data. 
The  Split  Grammars  technique  proposed  by  Wonka  et  al.[11] 
requires the creation of a large set of complex architectural rules 
before building generation can begin. The agent based simulation 
technique also uses  a  large  and complex set  of  pre-determined 
behaviours to specify how the agents act. Varied results can be 
obtained without strictly requiring changes to the city generation 
systems. But in order achieve results of a similar quality to some 
of  the  examples  shown  a  level  of  expertise  and  in-depth 
knowledge of each system is required that is not possible for the 
general user.

The existing city generation solutions do not provide interactive, 
tactile  or  close  control  over  the  generation  process.  The  grid 
layout  system proposed by Greuter et  al.[19] is  very restrictive 
allowing only the grid spacing to be adjusted by the user. Growth 
based  algorithms  such  as  L-systems[23] or  agent  based 
simulation[12] are  difficult  to  control  due to  their  evolutionary 
nature. Both growth based generation solutions use a system of 
image maps to provide incentives for growth in certain areas of 
the city. An additional layer of control is specified in the form of 
numerical parameters that influence factors such as road branch 
distance,  road  branch  angle,  etc.  The  template  based  approach 
uses  a  selection of  basic  procedural  templates  to  create  a  road 
network. The templates cannot be edited by the user and no user 
interaction is documented.

A city is a large and complex model and cannot be rendered easily 
in real-time on commodity hardware. In  order to render such a 
complex  model,  optimization  systems  such  as  level  of  detail, 
culling  or  paging  are  necessary.  Out  of  the  city  generation 
solutions  studied  only  Greuter's  system  provides  real-time 
optimisations via the use of view frustum filling and geometry 
caching.[13] The  view frustum filling  technique is  possible  by 
using a simple regular grid road network but is not applicable in 
its current form to more complex road networks. 

We  have  reviewed  the  city  generation  systems  and  discussed 
some  of  the  areas  that  warrant  further  research.  From  this 
discussion  we  have  obtained  a  key  list  of  goals  for  our  city 
generation solution to build and improve upon existing work.

• Accessible – input data such as geo-statistical data or complex 
architectural rules should not be required to use the system.

• Interactive  –  the  system  should  be  capable  of  fully 
autonomous generation but also facilitate interactive control.

• Real-Time – for efficient rendering optimization  techniques 

like  culling,  paging  and  level  of  detail  should  be 
implemented.

To  summarize,  the  goal  for  our  research  is  to  create  a  city 
generation  system  suitable  for  real-time  applications  that  is 
capable  of  creating  realistic,  varied  and large  scale  cites  in  an 
efficient manner while remaining accessible to non-expert users.

 Our  current  design  comprises  of  three  major  components: 
primary  road  generation,  secondary  road  generation and 
building  generation.  All  three  components  are  united  within  a 
standalone application providing interactive control over the city 
generation process.

The  primary  road  generation  component  utilises  procedural 
templates Sun et al. that encapsulate common city road network 
patterns such as raster, radial, hierarchical and cellular. In addition 
to  the  previous  template  based  solution  the  templates  are 
dynamically  editable  and form only the  high level  roads.  Each 
road  network  template  can  be  applied  to  a  terrain  as  an 
interconnected  graph  with  edges  of  the  graph,  the  roads, 
automatically  deformed  by  terrain  characteristics  such  as 
gradients,  water  levels  and  other  obstacles.  The  resultant  road 
network  graph  is  editable  using  an  interactive  3D  interface. 
Streets  can  be  added,  deleted  and  moved  using  junctions  as 
control  points for easy manipulation. Editing the control  points 
affects not only the primary road network but also the secondary 
roads  within  providing  a  tactile  method  to  control  all  road 
generation.

Cells resulting from the division of the city by the primary road 
network  form  the  basic  units  upon  which  the  secondary  road 
generation component operates. A technique similar to that used 
in [23] based on L-systems can be applied inside the cell although 
several  different  algorithms  including  agent  based  approaches, 
and simple procedural  templates can be applied within  a single 
city.  Global  and  local  parameters  are  adjusted  to  specify  the 
behaviour of generation algorithms in a citywide and/or local cell 
scope. To optimize rendering of the city we propose to page cells 
similar  to  terrain  paging,  the  primary  road  network  forms  a 
skeleton and the secondary road network cells within can be pre-
emptively generated and loaded on demand using a cell adjacency 
model.

Buildings can be placed on the lots created from the secondary 
road network and can be constructed using a generative grammar 
such as L-systems. Several different building usage types will be 
supported  including  commercial,  industrial,  and  residential. 
Building structures are generated at run time and can thus provide 
a  substantial  reduction  in  memory  usage  by  storing  simple 
generation  data  and  generating  large  complex  geometry  only 
when  required.  This  geometry  generation  can  be  applied  to 
construct  several  variants  of  buildings  depending  on  the 
instantiation parameters used. L-systems refine a basic model into 
a complex model by applied a series of productions iteratively. A 
range dependant level of detail can be provided by including an 
instantiation  parameter  that  specifies  the  number  of  L-system 
iterations  proportional  to  the  distance  between the  camera  and 
building.

At  present  an  interactive  application  has  been  built  that 
implements  the  primary road generation  component and partial 
secondary  road  generation  enabling  basic  road  network 
manipulation  and  interactive  editing.  Current  work  involves 
implementing complete secondary road generation and generative 
grammars  for  building  generation.  Real-Time  rendering 
provisions  including  cell  paging,  runtime  geometry  generation 
and  L-system  level  of  detail  are  currently  catered  for  and  we 
would like to further explore and test these optimisation schemes.
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