
Abstract
The computer game industry requires a skilled workforce and this
combined with the complexity of modern games, means that
production costs are extremely high. One of the most time
consuming aspects is the creation of game geometry, the virtual
world which the players inhabit. Procedural techniques have been
used within computer graphics to create natural textures, simulate
special effects and generate complex natural models including
trees and waterfalls. It is these procedural techniques that we
intend to harness to generate geometry and textures suitable for a
game situated in an urban environment. Procedural techniques can
provide many benefits for computer graphics applications when
the correct algorithm is used. An overview of several commonly
used procedural techniques including fractals, L-systems, Perlin
noise, tiling systems and cellular basis is provided. The function
of each technique and the resulting output they create are
discussed to better understand their characteristics, benefits and
relevance to the city generation problem. City generation is the
creation of an urban area which necessitates the creation of
buildings, situated along streets and arranged in appropriate
patterns. Some research has already taken place into recreating
road network patterns and generating buildings that can vary in
function and architectural style. We will study the main body of
existing research into procedural city generation and provide an
overview of their implementations and a critique of their
functionality and results. Finally we present areas in which further
research into the generation of cities is required and outline our
research goals for city generation.

 1 Introduction
As technology evolves and computing power increases, the
consumer appetite for more detail, realism and scale is ever
growing. The modern media industry, including games, films,
advertising and television, is struggling to meet the expectations
set by the largest projects and everyday production costs are
spiralling out of control.

The traditional approach to meet consumer demand has been to
simply increase the number of artists working on a project to
produce larger, more detailed and realistic content. However,
increasingly the artistic pipeline is not scaling, meaning that
additional artist numbers do not generate a proportional yield of
content. The additional costs incurred add to the already high
development costs and are paid by the consumer. The result of
this is that time and money that could have been allocated to
improving game play or adding innovative features has been lost
on content creation. As a consequence of high development costs,
a barrier of entry into the market is created and new fledgling
companies find it difficult to get a foothold thus stifling
innovation.

A potential solution for the content creation problem is the
application of procedural techniques. These techniques have been
used for over 20 years in the field of computer graphics [17] for a
wide range of applications: adding noise to existing textures [28],
creating 3D textures of natural materials such as marble and wood

[24], visualising life-like models of various tree and plant species
[27] and generating detailed cellular textures such as skin or
bark[17]. Entire procedural worlds are now possible and this is
demonstrated in the MojoWorld [6] application, where assets
including realistic natural features such as terrain, lakes, trees and
shrubs are all generated using procedural techniques. Recently
procedural applications have been expanded further to simulate
special effects including particle systems, water, and even the
natural physical movements of assets [5]. Complex scenes
containing many different models would normally take months to
manually construct, now vast section of these scenes can be
created using specialist procedural generation packages [7] that
can generate detailed and varied models in minutes. Procedural
generation is a time saving method of rapidly and efficiently
generating content that can help to alleviate and potentially solve
the problems of escalating content creation costs.

Existing procedural solutions primarily apply procedural
techniques to the generation of natural phenomena, but many of
the same techniques have obvious applications in the generation
of man-made artificial phenomena. Our work focuses on the
creation of procedurally generated cities for use in games and
other graphical applications that are situated in urban landscapes.

Cityscapes are difficult to model. They are rich in visual and
functional complexity and are a result of development and
evolution over hundreds of years under the influence of countless
factors. Some of the major influential factors affecting cities
include population, transport, environment, elevation, vegetation,
geology and cultural influence. It is a formidable challenge for
researchers and developers to create a realistic model of such a
large and complex system. We aim to develop an accessible
interactive software system that can automatically generate a
realistic, detailed and varied model of a city suitable for use in
real-time rendering.

In this paper we present a survey of procedural generation
techniques and of attempts to apply these techniques to the city
generation problem. In Section 2 we provide an overview of
procedural generation in general and present a number of key
techniques and algorithms. In Section 3 we describe how
researchers have attempted to apply procedural techniques to city
generation. Section 4 concludes with an outline of our proposed
approach for creating a city generation system.

 2 Procedural Techniques
The key property of procedural generation is that it describes the
entity, be it geometry, texture or effect, in terms of a sequence of
generation instructions rather than as a static block of data. The
instructions can then be called on when required to create
instances of the asset and the description can be parametrised to
allow the generation of instances with varying characteristics. A
typical example of this approach would be the population of a
forest with procedurally generated unique trees [5].

Procedural techniques can thus be employed to produce varied
assets. One of the most basic techniques that can be used is the
generation of 3d primitives with random parameters, for example

A Survey of Procedural Techniques for City Generation
George Kelly

kellygp@gmail.com
ITB, Dublin, Ireland

Hugh McCabe
hugh.mccabe@itb.ie
ITB, Dublin, Ireland

mailto:kellygp@gmail.com?subject=Re:%20Survey%20of%20Procedural%20Techniques%20for%20City%20Generation
mailto:hugh.mccabe@itb.ie?subject=Re:%20Survey%20of%20Procedural%20Techniques%20for%20City%20Generation

a cuboid with random height. Simple algorithms utilizing pseudo
random functions can be employed to generate noise for use in
texturing and natural formations[28] More complex recursive
algorithms such as fractals or L-systems can be used to recreate
organic structures found in nature like snow flakes and trees [27].
Ebert et al. [17] identify the following as important features of
procedural techniques:

• Abstraction: Geometric and texture data is not specified in
the conventional sense, instead details are abstracted into an
algorithm or set of procedures. These procedures are then
handled by the computer and called on when needed.
Minimal details are required and the operator can manipulate
the model data easily without requiring intimate knowledge
of the implementation.

• Parametric Control: Parameters are defined and adjusted
that directly correspond to a specific behaviour in the
procedural generation. The developer can define as many
useful controls as required for the artists to operate
effectively. Example of parameters include the height of the
mountains in a terrain algorithm or the number of segments
in a procedural sphere.

• Flexibility: It is possible to capture the essence of an entity
without explicitly bounding it within real-world limits.
Parameters can then be varied to produce a wide range of
results which are not necessarily limited to the constraints of
the original model.

Procedural techniques have been applied successfully in the
generation of numerous complex phenomena in computer
graphics and have proved beneficial for a number of reasons.

Textures, geometry or effects abstracted into procedural
algorithms are not fixed at a set resolution or number of polygons.
Procedural techniques are therefore inherently multi-resolution in
nature and can vary the complexity of their output. This capability
is of particular interest to computer graphics. For example level of
detail (LOD) is important in any 3D rendering system and
essential to real-time rendering applications [22]. The concept
behind LOD is to use more simple versions of an entity if it
contributes less to the final rendered image. So for an object that
occupies only 4 pixels in the final image, 10,000 polygons are not
required and a basic representation using 10 polygons would be
sufficient. The multi-resolution nature of procedural techniques
allows the possibility of automatically generating models at
multiple levels of detail [17].

Concise descriptions for generated objects are possible and can
often be expressed in the terms of a few simple parameters. These
small descriptions can be used to create large amounts of detailed
textures and geometry, this effect is known as data amplification
[17] and provides developers with the means to create an entire
game world that is easily distributable over low-bandwidth
network connections. The conciseness of procedural techniques
are exploited by Demo Scene creators who create and distribute
scenes that are complex and rich in detail in the form of tiny
executable files as small as 2KB [10].

The flexibility and control provided by procedural techniques give
the designer a platform for artistic freedom and experimentation.
New visual effects and original objects can be created by
experimenting with parameter values that exceed normal
boundaries. [7]

Typically procedural algorithms are implemented in software,
however recent advances in graphics hardware have opened up
the possibility of executing them directly on the GPU. For
example, complex procedural techniques like volumetric textures

that were previously impossible to run real-time can now be
implemented in this manner [21][16]

We now describe a number of fundamental procedural techniques
and algorithms that have been successfully employed within the
domain of computer graphics.

 2.1 Fractals
Natural shapes are not easily described by conventional geometric
methods. Clouds are not spheres and mountains are not cones.
Natural shapes tend to be irregular and fragmented and exhibit a
complexity incomparable to regular geometry [29]. However
these shapes can be described using a branch of mathematics
called fractal mathematics. Benoît Mandelbrot, regarded as the
'father of fractals', coined the term fractal in 1975 [29] from the
Latin fractus meaning broken.

Figure 1: The first four iterations of the Koch snowflake

The basic concept of fractals is that they contain a large degree of
self similarity. This means that they usually contain little copies of
themselves buried deep within the original like the stars
embedded in the Koch Snowflake[17] shown in Figure 1. Also,
fractals possess infinite detail, so for any given fractal the closer
we look at it the more detail it can reveal. [20]

Like any procedural technique, a fractal shape is defined by an
algorithm for generating the shape. In the case of fractals these
algorithms are recursive and successive recursions yield more
detailed versions of the basic shape. The example of the Koch
snowflake in Figure 2 shows four such recursions. Self-similarity
is achieved by generating the same shapes or patterns at smaller
and smaller scales as the recursion progresses, a property often
referred to as scale invariance. There is no theoretical limit to the
amount of recursion that can be done and hence infinite levels of
detail exist within the shape.

Visualizing fractals manually is repetitive, tedious and limited and
therefore computer-based implementations of fractal algorithms
have been present from the start. Mandelbrot utilized computers
while an employee at IBM to visualise complex fractals including
the Mandelbrot Set [29] (see Figure 2).

Figure 2: Mandelbrot Set.
© Wiki public domain.

Figure 3: IFS Fractal Ferns [25]

Fractal-like shapes such as trees or ferns can be procedurally
generated using relatively simple recursive algorithms. In fact a
wide range of natural structures from simple plants to terrain can
be generated in this manner [25]. Fractal algorithms provide
effective abstraction from the structural complexity of the natural

objects they represent and can utilize recursion to provide varying
levels of detail. These techniques also provide the key property of
data amplification in that complex models can be generated from
the recursive application of simple equations.

Fractals are limited however to self similar structures and the
objects we are seeking to model may not necessarily contain this
self-similarity. They are superseded in many contexts by other
more flexible algorithms like formal grammars such as L-systems.

 2.2 L-Systems
Lindenmayer systems, or L-systems for short, are a formal
grammar devised by biologist A. Lindenmayer as a mathematical
theory for biological development. L-systems were originally
developed to study bacteria replication and the growth patterns of
simple organisms such as Algae described by Lindenmayer in the
Journal of Theoretical Biology in 1968 [32]. The system and its
applications have evolved and are now applied in the field of
computer graphics and in particular to the generation of fractals
and the realistic modelling of plants.

The central concept of L-systems is that of rewriting [26]. In
general, rewriting is a technique for defining complex objects by
successively replacing parts of a simple initial object using a set
of rewriting rules or productions. The components of an L-system
are as follows:

• V (the alphabet) is a set of symbols containing elements that
can be replaced (variables)

• S is a set of symbols containing elements that remain fixed
(constants).

• ω (start, axiom or initiator) is a string of symbols and constants
that define the initial state of the system.

• P is a set of rules or productions defining the way variables can
be replaced with combinations of constants and other
variables. A production consists of two strings - the
predecessor and the successor.

An initial state or axiom, ω, is provided which is then rewritten
using a series of rewriting rules or productions, P. The
productions are applied iteratively, allowing large complex
objects to be defined using a simple set of productions.

V = {a, b}
ω = a n=1 : ab
P1 : a → ab n=2 : abba
P2 : b → ba n=3 : abbabaab

Figure 4: The Thue-Morse system

L-systems can be used to visualise structures by embedding
graphical symbols within the string that can be used later to render
it. Turtle commands can be used to describe and visualize a wide
range of L-systems including Koch's snowflake, plants and
branching structures. The concept behind Turtle Graphics is that
the 'turtle' is given instructions relative to its current position and
as it moves it leaves a pen line mark behind it. Using turtle
graphics: shapes, drawing and structures can be defined in the
terms of a L-system. Using a bracket extension to Turtle
Graphics, L-systems can support the branching structures such as
trees that are predominant in nature. [32] Figure 5 illustrates the
application of such an L-system used here to recreate a complex
tree.

 F : forward 1 unit
 + : turn left δ degrees
 - : turn right δ degrees
 [: push the transform state
] : pop the transform state

n=5, δ=22.5◦
ω = X
P1 : X→F-[[X]+X]+F[+FX]-X
P2 : F→FF

Figure 5: Tree formation generated with via the turtle graphics L-system
interpreter. [27]

L-systems were designed to define and visualize sophisticated
plants and other natural structures. As academic research has
continued into their application in botany it has also continued in
the realm of procedural generation. Significant advances have
been made and packages are now available commercially that
apply L-systems to generate rich landscapes of detailed flora
covering a wide range of different species.

Figure 6: Speed Tree [5] screenshot demonstrating procedurally generated
and real-time rendered trees.

L-systems are a good example of procedural techniques for a
number of reasons. They allow complex models and organic
structures to be defined, modelled and visualised using a concise
set of productions. A varying level of complexity can be
supported by parameters such as the recursion level of the L-
system [15]. The algorithms can be defined in a compact and
intuitive manner and can effectively abstract the recursive
structure of many natural phenomena. L-system generation can be
adjusted easily via external parameters and are extensible by
nature similar to other formal grammars.

 2.3 Perlin Noise
Perlin Noise was initially developed to help create more “natural
looking” textures. The technique was developed by Ken Perlin for
use in the film Tron in 1982. As a result from his work in Tron
Dr. Perlin received an Academy Award for Technical
Achievement in 1997 [24]. Noise is created by first using a
pseudo random function to generate a series of values which are
then interpolated into coherent noise. Several layers of this
coherent noise are then composited together using different ratios
to create a “natural looking” texture with fractal like detail.

Noise Function
A noise function generates random data. So each time the function
is called a new number is returned. This is useful however does
not allow control of the results obtained. In order obtain
parametric control from the noise generator a seeded random
function is used.

1 2 3 4 5 6 7 8 9 10 11 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Seed

Figure 7: A seeded random generator will produce the same results when
given the same input number or seed but still produces numbers in a

random pattern.

Interpolation Function
Interpolation is a process of curve fitting in which a function is
constructed that intersects exactly through the data points. This
function can generate new data points given known data points, in
this case the input points are those generated by the noise
function. For a finite set of data points a function can be generated
that allows us to obtain an infinite range of points. Several
different algorithms are available to perform this interpolation.
The algorithms vary in the number of data points they take as
input, the accuracy they provide, their computational complexity
and the smoothness of the curve that they generate. The graphs
below demonstrate just two of the many different methods used
for interpolation using data from Figure 7. Figure 8 shows the
most basic linear interpolation and Figure 9 the more complex
cubic interpolation.

1 2 3 4 5 6 7 8 9 10 11 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Seed

Figure 8: Linear interpolation is one of the simplest methods used and is
often selected when speed is important and quality is of secondary

importance. Linear interpolation only takes two points and the interpolant
is calculated using the weighted mean.

1 2 3 4 5 6 7 8 9 10 11 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Seed

Figure 9: Cubic interpolation is quite computationally intensive. It is
used when quality not speed is of particular importance and it outputs a

continuous curve unlike linear interpolation. Cubic interpolation requires
four points.

Turbulence
Results produced from interpolated noise have random properties
but appear quite artificial rather than natural. In nature, there are
many different scales of detail present. For example take a
mountain range: large details are present with giant peaks and

troughs, medium scale details are present through the smaller hills
and crests, small details present through boulders and rocks, etc.

→
Figure 10: Combination of several layers of noise.

To provide a more useful texture source that resembles nature
more turbulence is applied by combining several noise textures of
differing scales. Each layer of noise is referred to as an Octave
and layers are combined with different amplitudes and
frequencies. The variation of amplitude and frequency can be
expressed a Persistence value. Persistence can help describe the
effect successive octaves have on the previous iterations by
defining the amplitude between octaves as a fraction. Perlin Noise
generated with a low ratio of persistence is typical smooth with
very fine detail, Perlin Noise generated with a high persistence is
more jagged with less fine detail.

Figure 11: Photo realistic scenery and rendered using Terragen with
procedural geometry generation and procedural texturing. © 2003 M.

GIULI Terragen Artist.

Terragen[9] uses the Perlin Noise algorithm to generate photo
realistic terrain, clouds and seas. Figure 11 Showcases the details
and scale of output that can be achieved using the Terragen
procedural generation software. Parametric control is vital to the
procedural generation process as it allows the generation to be
easily managed and enables vastly detailed scenes to be defined in
the terms of a few parameters. The Perlin noise algorithm also
provides a mechanism by which the height for any point or region
can be calculated on the terrain without the need to store the
massive terrain geometry data.

In addition to 2D textures, Perlin Noise
can be used to generate 3D textures,
often referred to as volumetric or solid
textures. Volumetric texture differ from
conventional 2D textures in that they
do not require bindings to geometry
coordinates but allow objects to be
virtually carved from the texture as if
they were a solid block [24]. The
example shown in Figure 12 shows a
vase carved out of a volumetric marble
texture created using Perlin noise. The
texture manages to replicate the veins
running through the marble and
achieves a higher level of realism than
is possible using 2D texturing
techniques.

Volumetric textures are computationally expensive to render, but
the real barrier for their widespread use is their memory and

Figure 12: Marble vase
textured with a Perlin
procedural volumetric

texture[24]

storage requirements. Compression such as S3TC can partly
alleviate the memory problems of 3D textures but do not go far
enough. Perlin Noise requires minute storage due to its procedural
nature thus removing any storage burden, and can even by used to
render volumetric textures in real-time using the pixel-shader
hardware on recent GPU's [21].

As a procedural generation technique Perlin Noise provides a
comprehensive set of benefits. Parametric control provides the
developer with flexibility to control the output through high level
parameters. Reproducible geometry and textures created using the
algorithm have minimal storage requirements, can be generated
efficiently and can be defined in the terms of a few simple
parameters. Textures of any size and detail can be produced
providing an innate level of detail. The output created is tile-able,
allowing seamless joins suitable for techniques like repeating and
layering which are common place in multi-texturing. It can also
be used as method to enable real-time volumetric textures on
modern graphics hardware.[21] Perlin Noise has proven to be one
of the most useful procedural techniques and is beneficial in wide
range of computer graphics applications.

 2.4 Tiling
Tiling is one of the most basic procedural techniques and has
traditionally been applied in game development. It is used in
many classic games including titles such as Sonic, Mario and R-
Type. Originally tiling was used by creating small sections of 2D
graphics that could be repeated on screen and assembled together
to create the virtual world. Games such as the Shoot Em Up
Construction Kit [4] released in 1987 by Sensible Software
allowed the user to construct and edit game maps using a library
of tiles and a simple interface.

More recently tiling techniques have evolved and are used in the
form of multi-texturing to create highly detailed and varied
textures from layers of base textures. New materials are created
by combining a set of detailed textures, colour maps and blending
maps. Using this technique terrain can be procedurally textured by
applying several layers of detailed tile-able textures.[9] Examples
of texture layers could include rock, grass, sand and snow. These
texture layers can be combined with varying degrees of influence
on the final texture. Textures are applied to the terrain according a
variety of specified parameters, they can be selected according to
height, slope or specified explicitly using an image map. This
solution allows vast areas to be textured in detail which is not
possible using a single high resolution texture.

Figure 13: Warcraft® III uses stochastic information to procedurally
generate Textures. © 2002 Blizzard Entertainment

Extended algorithms exist that use stochastic information such as
probability distribution maps to procedurally texture landscape.
An image map for the terrain area is supplied that stores the
probability of using various tiles. Constraints can be specified to
state which tiles can be joined under what conditions and whether
they may be joined directly or require transitional tiles. Using a
pseudo random function thousands of different permutations of
worlds are possible from a single probability map. Each possible
world can be stored and recalled by simply taking note of the seed
used to create the world [14].

Tiling systems provide several advantages for graphics
applications. Vast and detailed landscape or terrain for virtual
worlds can be created from stochastic information and small set of
texture tiles. These maps and game worlds can then be easily
distributed for on-line gaming which is of particularly useful for
massively multi-player on-line role-playing games (MMORG)
and other on-line applications where game resources are shared.
Storage and memory requirements are minimised so it is possible
to optimally store and render worlds of vast dimensions in real-
time on commodity hardware. Tiling is a good example of how a
simple procedural technique can be applied and extended to
provide benefits for graphics applications.

 2.5 Voronoi Texture Basis
Voronoi diagrams were demonstrated as a method of procedural
generation by S. Worley in his paper titled 'A Cellular Texture
Basis Function', in which he detailed an algorithm that partitions
space into a random array of cells creating cellular looking
textures. The technique was devised to complement existing
procedural techniques such as Perlin Noise and provide a method
of procedural generation for cellular surfaces such as skin or bark.
Voronoi diagrams have long preceded their application in
procedural generation and have traditionally been used in a wide
range of scientific applications including spacial analysis,
planning, urban settlement analysis, geology, robotics and
ecology.

Figure 14: Voronoi Diagram with coloured cells

A Voronoi diagram is the decomposition of some metric space
determined by distances to a specified discrete set of objects in the
space. Figure 14 shows an area partitioned into cell by lines
which are plotted using the points on the map. Each boundary line
is positioned equidistant between each pair of neighbouring
points. The resulting Voronoi diagram is a result of the position of
the original points. A wide range of cellular patterns can be
created by using different configurations to place the points used
to create the diagram, also this data can be interpreted and
rendered in many different ways for different effects.

Figure 15: Photo-realistic surfaces procedurally created using
Worely's cellular basis algorithm. [3][17]

The Worley algorithm achieves effective abstraction for the
generation of cellular surfaces by providing a small set of
parameters termed the 'Worley constants' that can control of the
algorithms operation yet allow great variance of the output.[3]
Natural surfaces such as paper, skin, cobblestone, tree bark and
sun baked mud are prime targets for this algorithm and can be
recreated effectively with little input data required. [17] Figure 15
shows examples of Worleys algorithm applied to procedurally
generate natural textures. The algorithm has been used
successfully in procedural generation creating a variety of richly
detailed cellular surfaces which can be concisely defined in the
terms of a few simple parameters.

 3 Procedural City Generation
The procedural methods outlined in the previous section have
largely been applied to the generation of natural objects and
textures. Only recently have researchers turned their attention to
their application in the context of generation of man-made
phenomena such as an urban area. In this section we shall review
and evaluate research that has been carried out on procedural
generation of cities. City generation is achieved through a series
of stages that each use a number of techniques to create roads,
lots, building structure and building faces.

Road networks are a key aspect of city character and identity.
Road networks are difficult to generalize since they are an
interwoven component of a complex system. When viewing road
networks from a map or city plan a number of patterns can be
observed. It is these patterns that are key for procedural
generation as they encode the structure of the road network. There
are numerous road network patterns deployed in cities ranging
from the tightly structured grid plan network with perpendicular
roads in a regular chequerboard structure to the hierarchical
network with sprawling secondary and tertiary roads feeding into
arterial roads in a branch like system. The patterns applied within
a city are a result of numerous factors including location,
geography, cultural influences, planning trends, etc. Cities can be
categorised by the road patterns they contain: modern US cities
like New York are arranged in a chequerboard or raster pattern,
some European cities like Paris are structured with a radial or
concentric pattern most evident. However most cities contain a
number of patterns, with different patterns prevalent in different
regions or neighbourhoods within the city. [33][31]

City buildings are difficult objects to procedurally generate
because of their individuality. The buildings present in a modern
city display a diverse range in both function and style. Buildings
as functional units serve a specific purpose or role within each
neighbourhood, borough, district and city. The number of roles
for buildings are many and combined with the geographic
composition within a city make for an extremely complex system.
Such a complex system is difficult to model, but a simplified
solution can be used, similar to that used in statistical analysis,
that uses classes or groups to model building function. Usage
groups such as commercial, residential and industrial can be used
as select generalizations for the numerous building roles and a

simple mechanism for modelling function within cities. The style
of a building and in particular its geometry and materials are often
the result of numerous architectural and cultural influences. Such
a complex form is difficult to model and an approximation or
substantially reduced model is needed to limit the complexity of
the generation system.

To effectively evaluate the generation systems we have identified
a number key criteria:

1. Realism – Does the generated city look like a real city?

2. Scale – Is the urban landscape at the scale of a city?

3. Variation – Can the city generation system recreate the
variation of road networks and buildings found in real cities or
is the output homogeneous?

4. Input – What is the minimal input data required to generate
basic output and what input data is required for the best
output?

5. Efficiency – How long does it take to create the examples
shown and on what hardware are they generated? How
computational efficient is the algorithm?

6. Control – Can the user influence city generation and receive
immediate feedback on their actions? Is there a tactile intuitive
method of control available or is the control restricted? To
what degree can the user influence the generation results?

7. Real-time – Can the generated city be viewed in real-time?
Are there any rendering optimisation techniques applied to
enable real-time exploration?

An overview will be presented of each of the city generation
systems and an insight provided into the functioning of the
techniques and algorithms applied in the systems. Following each
outline of the system we discuss and evaluate each system
according to our criteria. Realism, Scale, Variation, Input,
Efficiency, Control and Real-time optimisations.

 3.1 Grid Layout & Geometric Primitives
Stefan Greuter et al.[19][13][8] outline a solution to procedurally
generate a city in real-time. The techniques applied to generate the
city are discussed in a number of papers and demonstrated in a
virtual city application titled Undiscovered City. The application
creates a road network using a simple grid layout upon which it
can place buildings generated using a combination of simple
geometric primitives. The research is specifically targeted for
real-time applications and the Undiscovered City serves as a proof
of concept running in real-time at interactive frame rates.

Road Network: Grid Layout
The roads of the city are created in the pattern of a uniform grid in
a similar fashion to the centre of a modern planned American city
like New York. The grid is regular and size of each block is
constant but can be adjusted globally.

Figure 16: Screen shot at street level in the Undiscovered City demo

Figure 17: Screen shot from the Neverland demo

The grid based road network generation has been improved in the
Neverland demo, a more recent work from Greuter et al., shown
in Figure 17. This system extends some of the buildings over
more than one grid block creating a more disjointed road network
and giving the city a more realistic appearance. A paper detailing
the Neverland demo has yet to be published.

Buildings: Geometric Primitives
The building generation system uses the location of buildings in
the form of a grid coordinates as a seed for building generation.
The appearance of each building is determined by this seed
including properties such as height, width and number of floors.
Generating buildings using a similar set of numbers such as
neighbouring grid coordinates can result in similar looking
buildings, so to overcome this a hashing function shown in
 Figure 18 is implemented in order to provide more random
distribution.

Figure 18: Grid Layout Coordinates & Hashing [13]

Building geometry is generated using the concept of combining
geometric primitives to form building sections. Each building
section is constructed using a different floor plan. The top most
section of buildings are created by extruding a three dimensional
volume from the most basic of floor plans, composed from only a
few primitive shapes. In subsequent sections below, another
primitive shape is added to the previous floor plan and a three
dimensional volume is extruded in the same fashion. Figure 19
illustrates how the creation of consecutive sections are combined
to form the complete geometric model of a building. Figure 20
shows the generated buildings with their textured faces which are
not procedurally generated but are selected from a set of 10
building window textures.

Figure 19: Floor Plan Generation [13]

Figure 20: Screen shot from the Undiscovered City demo

The Undiscovered City is
designed with real-time
applications in mind and
implements optimisations
such as a geometry caching
and view frustum culling.
The culling technique,
referred to as View Frustum
Filling [13], renders only
the buildings visible within
the view frustum as shown
by Figure 21. By loading
and rendering a reduced set of buildings the amount of memory
required to store the scene and the graphical processing power
required to render the scene are minimised enabling the real-time
rendering of a large data set like a city. The regular grid road
network allows easy detection of building visibility within the
view frustum and hence provides a computationally efficient
method to cull superfluous buildings from view.

In addition to culling building geometry, a building cache is also
implemented. Buildings are generated in advance and defined as
OpenGL display lists that can be stored in the building cache. The
cache employs a LRU(least recently used) algorithm: recently

Figure 21: View frustum filling. [13]

accessed buildings are kept in the cache while older less recently
accessed items are replaced. As a result of using the building
cache memory use is optimized and buildings can be recalled
from cache for display an order of magnitude faster(up to 8x) than
they can be generated from scratch.

Discussion
1. Realism: The single grid pattern used does not reflect real

cities that are constructed from a number of patterns and the
resulting road network appears artificial and homogeneous.
Buildings appear angular and modern and are somewhat
realistic but unconvincing. Simple windowed faces are used
and the buildings are not geometrically detailed.

2. Scale: The grid layout system can create road networks on a
very large scale and is limited only by the size of the integer
based coordinates. At 232 cells wide, the size is not a practical
restriction for city generation.

3. Variation: The road network provides little variation, a single
regular grid pattern is used and only the grid spacing can vary
from city to city. The grid system is required for the real-time
optimizations and so is largely inflexible. Only a single
building type is constructed, an office skyscraper with 10
different window textures, no other type of building is
supported. Although the geometry for each building is
different the amount of variation insufficient to emulate a real
city.

4. Input: No input maps or geo-statistical data is required. No
external image maps are required and the application is
standalone.

5. Efficiency: Road network and building generation take place
in real-time and figures are provided for the generation and
rendering of the Undiscovered City.

6. Control: Grid spacing can be adjusted using short-cut keys in
the application and the changes can be viewed in real-time.
The building generation process is not interactive and all
buildings are generated using a random seed created using a
set of building coordinates from the road grid network.

7. Real-time: The system is designed for real-time applications
and can render views of large scale cities in real-time on
commodity hardware from 2003 at interactive frame rates.
[Performance for numbers of buildings being displayed on
screen: 200 buildings @60fps, 500 buildings @20fps, 1000
buildings @5fps].

 3.2 L-systems
Parish and Müller[23] presented the CityEngine in a paper titled
Procedural Modeling of Cities at SIGGRAPH 2001. The
CityEngine consists of a suite of components including road
generation, building construction and building face creation that
unite to form a pipeline for city generation. L-systems are selected
as the key technique for procedural generation in the CityEngine.
Lindenmayer-systems have traditionally been used to model
natural phenomena but are also suitable for the generation of
cities due to their concise nature, computational efficiency and
data amplification properties.

Road Network: L-systems
L-systems have been used to model natural phenomena and the
generation of plants and other branching structures provide some
similarities to the generation of road networks. The CityEngine
uses an extended form of L-systems titled Self-sensitive L-
systems to construct road networks in a manner which takes
existing growth into account.

Input is taken in the form of 2D image maps. Geographical
information on elevation, vegetation and water boundaries is
required and additional socio statistical image maps can also be
included specifying information such as population density, land
usage, street patterns and maximum building heights. A road
network generation application, shown in Figure 23, is used to
manage the generation of roads and allow the operating user to
specify extra parameters such as the smoothing angle of road
network edges, road width, etc. Although only a geographical
input map is required the examples included in the paper, such as
Virtual Manhattan in Figure 27, utilize a number of different
input maps.

Road generation is accomplished through the use of two rule sets:
the Global Goals and the Local Constraints. Road segments are
initially plotted according to the Global Goals which are similar to
the goals that a city designer may have. These tentative plans are
then refined by the Local Constraints which reflect the practical
constraints of the real world and the state of the existing road
network.

Global Goals

• There are two different types of roads: highways or major
roads connect population density centres which can be
identified from the population density map supplied at input,
small roads connect to the nearest highway.

• Streets follow some super imposed geometric pattern.
• Streets follow the path of least elevation.

Local Constraints

• Road segments are pruned to fit inside a legal area: line
segments extending into water are pruned.

• Roads are rotated to fit inside a legal area: a road to the coast
bends around the coastline like a coastal road.

• Highways are allowed to cross an illegal area of a certain
distance: a highway approaching a limited span of water will
cross over it like a bridge.

• Roads segments are checked to see if they intersect with
existing roads or if they come within a certain distance of an
existing road junction: Figure 22 shows how proposed road
segments are modified to satisfy the self-sensitive rules.

Figure 22: Self-sensitive road L-system [23]

Figure 23: CityEngine GUI displaying Virtual Manhattan after 100 steps.
[2][23]

Buildings: L-systems
The CityEngine constructs buildings on the road network in a
series of distinct stages: define building allotments, create
building geometry and generate textured faces. To define building
allotments the CityEngine utilizes data from the previous road
network generation stage. Figure 24 outlines the stages of
allotment generation. Allotments or lots are calculated by first
extracting blocks from the road network using the roads of the
network as the dividing borders. Each basic extracted block is
then divided into a series of potential lots via randomized
subdivision. Lots that are too small or have no immediate street
access are culled and removed from the system. The final lots
generated by the CityEngine are shown in the right-most image of
Figure 24 and appear both varied and practical.

Figure 24: Lot Division Stages [23]

Building geometry is generated through the use of a parametric L-
system. Several different building styles are implemented
including: skyscrapers, commercial and residential with each type
using a different set of L-system productions. The building type is
determined from a zone map which can be passed in as an image
map input.

Figure 25: L-System building refinement from bounding box of the

Empire State Building [2]

The initial state or axiom of the building L-system is a bounding
box generated from the lot footprint and a building height image
map if available. L-system operations consist of transformations
(scale and move), extrusions, branching and termination, and the
use of geometric templates for roofs, antennae, etc. L-systems
allow for the addition of more productions and provide an
extensible solution. A basic level of detail implementation is
possible since each iteration of the building L-system is a
refinement of a basic building bounding box as shown above in
 Figure 25.

Figure 26: Building face construction [23]

Building faces are created procedurally by generating textures
using an over-laid series of grid-like structures. Several layers of
grid-like structures are used with functions that define how the
layers are combined. The functions dictate which cells from what
layer are selected to create the final face and can use conditional
and statistical information to select cells. Cells typically contain
doors or windows but can contain any building face feature.
Shown in Figure 26 is the construction of a face: the red layer
influences the selection of cells from the green layer. The
resulting face is a conditional combination of multiple layers.

Figure 27: CityEngine - Virtual Manhattan – Maya render

The CityEngine produces data that can be imported into Maya, a
commercial 3D package, for final rendering. The sample shown in
 Figure 27 illustrates such a rendering from Maya, in this case a
showcase of Virtual Manhattan.

Figure 28: CityEngine - Virtual Manhattan – DV/reality

A real-time implementation is available utilizing DV/reality
software from Dimension. DV/reality is a large scale visualisation
tool designed to run on super computers and distributed rendering

applications. There are no real-time rendering features such as
level of detail or geometry culling discussed and from the screen-
shot of DV/reality in action in Figure 28 it is clearly evident that a
reduced complexity model is being displayed. (Notice how the
buildings appear more similar to the left most image of Figure 25
in contrast to the right).

Discussion
1. Realism: The CityEngine can create a complex and detailed

road network using extended L-systems. Figures 23
demonstrates the generation of a realistic road network, but
utilizes real statistical data making the generative capability of
the system difficult to assess. The blocks from the road
network are divided into realistic and practical lots upon
which buildings can be constructed. L-system building
generation provides an effective method of generating a
realistic cityscape although the resulting buildings are basic.
Several different types of buildings including skyscrapers,
commercial and residential buildings can be created and green
areas are also displayed. Overall a good visual balance is
achieved with practical positioning.

2. Scale: Scale does not appear to be an limiting factor for the
system and is possibly restricted only by the size of the input
data maps.

3. Variation: a good range of road networks can be created and
examples of different generated cities are shown including
Paris – Circular, New York – Grid and San Francisco –
Terrain wrapping. Buildings vary in shape and scale and a
range of building types are catered for, but only limited range
of style is demonstrated. In Virtual Manhattan a convincing
clone of New York is shown but it may be more difficult to
generate other cities where a different architectural style
would be required.

4. Input: the minimum input required is a geography map
however all of the samples shown utilize numerous input
maps and include statistical data from a real world cities. A
dependence on real-world data would require the acquisition
of geo-statistical data to begin using the system which is not
desirable. Also, from a practical point of view the system is
more difficult to evaluate since it is difficult to determine
which patterns are created by the L-systems and which are
created as a result of the input data. Although only one input
map is required, all of the samples shown in [23] utilize
numerous maps to create realistic output like that illustrated in
 Figure 27

5. Efficiency: Road network generation is very efficient, the
large road network of the Manhattan sample shown in Figure
27 is created in under 10 seconds. The next stage of
generation the building stage takes longer to complete: Virtual
Manhattan requires approximately 10 minutes to sub-divide
the road network into lots, construct buildings and create
textured faces. It is important to note that although the
generation time is documented the time required for Maya to
render Virtual Manhattan in is not disclosed and would likely
take substantially longer than both combined.

6. Control: It is unclear how much user interaction is required
and no interactive features are specifically documented. L-
systems are by their very nature iterative and it appears that
the number of iterations used by the system to generate output
of an acceptable realism and detail is determined by the user
trying different values on a trial and error basis. Other values
are also specified manually such as the angle of deviation.
Control of building generation appears to be limited to the

numerous image maps that can be passed as input.

7. Real-time: A real-time demonstration is available using the
DV/Reality software shown in Figure 28 that displays a
simplified version of Virtual Manhattan. DV/Reality[DVR] is
a visualisation tool designed to provide real-time rendering
though the use of high powered graphics workstations and
distributed rendering. No documentation on any real-time
features in the CityEngine are provided and without features
like geometry culling or LOD real-time rendering applications
like gaming are not possible. It may be possible to easily add
some optimizations such as a simple level of detail
implementation based on the principle that each L-system
iteration produces a more detailed building version refined
from a simple cuboid primitive as illustrated in Figure 25.

 3.3 Agent Based Simulation
Watson et al. [12] apply an agent based technique to generate
cities in their solution titled CityBuilder. The system is built on
the NetLogoTM platform which is a multi-agent programmable
modelling environment based on the Logo programming language
and is designed to provide users with a platform to explore
emergent phenomena. The city generation is implemented by
simulating cities using a set of agents that can model specific city
entities such as developers, planning authorities and road builders.
The CityBuilder system models not only the road network and
buildings but also simulates the growth and development of the
city over time.

Road Network: Agent Based Simulation
Roads are created from road segments that are assembled
according to a grid pattern. Deviation from the pattern is allowed
and can be specified via a parameter. A deviation value of zero
will result in a strictly uniform grid like road network, a deviation
value near one would result in an organic like network. The
interconnectivity of the network can also be altered via constants
that dictate the road density and the distance between road
intersections.

Figure 29: NetLogoTM City Builder Interface [12]

Input in the form of a terrain height map is required along with a
specified water level to determine the legal area in which roads
and buildings can be placed. Extra parameters such as road
density, grid spacing and deviation from grid can be adjusted

using sliders in the interface shown in Figure 29 to alter the
behaviour of the agents. Additionally users can specify certain
parameter values for specific areas by painting on the map using a
brush similar to that in a simple paint application.

The road segments are created by two types of agents – extenders
and connectors:

• Extenders roam around terrain near to existing developments
to search for land that is not serviced by the road network.
Once that area of land has been discovered, it is assessed
according to road density, proximity to existing junctions,
and deviation from the start point. Roads follow parcel
boundaries and try not to make large changes in elevation.

• Connectors roam over the existing road network sampling
the distance taken to travel to a point within a given radius
using a breadth first search of the road network. If this
distance is too long the connector will propose a road
segment between the two points, the proposed segment is
subject to the same checks as extenders.

a) b) c)

Figure 30: Example output of differing city structures: a) Gridded, b)
Organic & c) Mixed Gridded and Organic [12]

Road networks can be viewed evolving in real-time, and the
examples shown were created in 15 to 30 minutes. Figure 15c)
shows one of the main strengths of the agent based system by
effectively blending between raster and suburban road styles.

Buildings: Agent Based Simulation
The generation of land usage for buildings is completed via the
interaction of a number of agents but is primarily due to the work
of Developer agents. Developer agents perform the role of urban
developers and have similar goals: buy land, request planning
permission, build and sell. A rectangular grid of patches represent
the world and each patch may be occupied by a building or road.
Patches are grouped into parcels under the ownership of the
building agent. The building agent determines the zoning
information of each parcel and tracks attributes of the buildings.

Figure 31: Development Sequence. Yellow is residential, red is
commercial, blue is industrial. Roads are grey. [12]

Three distinct developer types are defined: residential,
commercial and industrial. All developers seek to increase the
value of their land and each developer type evaluates the value of
land differently and uses a different set of rules to complete its
goals. For example: residential developers seek land near the less
busy areas of the road network in contrast to commercial

developers who look for the busiest sections of the road network.
Property is reviewed and a site is chosen. A proposal is then
prepared that satisfies the clients needs and meets and the city's
restrictions. The proposal must then be reviewed by the city. A
developers' proposal is only successful if it passes the city
regulations and makes a net positive impact on the community by
providing a service or increasing the value of the land. After this
process is complete the developer agent starts again looking for
more property. Shown in Figure 31 are three snapshot images of
the evolution of a small city from left to right.

The CityBuilder system creates a road network and defines land
use that is then used to determine building types but does not
generate actual building geometry and textures. The visualization
of the city buildings is not a feature of the system but takes place
externally in the proprietary SimCity game engine.

Discussion
1. Realism: The road network is appears realistic and has the

ability to effectively transition between different road
patterns, particularly the transition from central urban areas to
less dense suburban areas. No buildings are generated but the
land usage map appears realistic resembling real statistical
data similar to that showcased in the chil.us [1] project.

2. Scale: The output created from the system and example
shown in Figure 31 is limited in scale and is of a comparable
scale to that of a village or small town rather than a city.

3. Variation: Different zones are supported with commercial
zones using rigid block like road structures and residential
areas using sprawling roads. Three different land usage and
building types are defined commercial, residential and
industrial. It is impossible to judge the variation achieved by
those categories as the visualisation is performed by the
SimCity engine which is outside of the system.

4. Input: A terrain height map and a water level input are
required to determine the legal areas in which buildings can
be placed. Other input can be specified by the user through the
interactive application.

5. Efficiency: CityBuilder models not only the structure of a city
but also its evolution and as a result of the added complexity
the algorithm is computationally intensive and time
consuming. A city of only limited scale similar to a village
can be generated over a period of approximately 15 minutes
not including the generation of any building geometry or
textures.

6. Control: An innovative feature is available in the form of a
paint tool that can be used to paint parameter values on the
map. Numerical parameters such as road concentration,
deviation and scale can be specified via an interactive
application using the various sliders and widgets of the GUI.

7. Real-time: There are no real-time considerations or even a
three dimensional model of the city. Visualization is provided
via an external system, the SimCity engine, that uses a flat
bitmap tile based game view.

The system could be easily expanded but with an algorithm of
high computational complexity and it is not suited for procedural
generation and could be more suitable for simulation applications.

 3.4 Template Based Generation
Sun, Baciu et al propose an alternative approach to creating cities
in their 2002 paper Template-Based Generation of Road
Networks for City Modeling through the use of a collection of
simple templates and a population adaptive template [18]. The
basic concept of the system is that a road network template is
applied to a geographic map as a plan and then the roads are
deformed subject to local constraints.

Road Network: Template Based Generation
Several inputs are required in the form of 2D image maps. A
colour image map which contains geographical information on
land/water/vegetation is required. A grey-scale height map image
to specify elevation is required. A population density map is
required for the population-based template and is used to
determine the varying road network density.

Population
based

Radial Mode Raster Mode Mixed Mode

Figure 32: Road Patterns [18]

The population-based template is implemented using a Voronoi
diagram. A road system is created that is representative of the
population distribution. Road networks are suitably dense in
highly populated areas and sparse in less populated areas. This is
made possible by extracting density points from the population
density input map and using the points as input sites for the
Voronoi diagram. The edges or cell boundaries from the resulting
diagram are used to create the interconnected road network. The
other templates use procedural patterns to create the road network.
The Raster Mode, Radial Mode and Mixed Mode templates serve
as simplistic growing patterns, with roads starting from a defined
centre point and growing in an iterative process toward the edges
of a bounded area. The Mixed Mode is simply a compound of one
or more of the other basic templates.

Templates define only the desired road pattern and just as road
planners must respond to practical constraints, so must the pattern.
Roads deviate from the supplied pattern changing direction
rapidly to avoid obstacles such as water and curve gradually to
avoid large changes in elevation. Roads are created in short steps,
at each step the system emits several fixed length radials and
selects the radial with the least variation in elevation that is in a
legal zone. In the case of a tie between two radials the path of
least deviation from the original path is chosen. The angles at
which the radials are drawn is restricted by a freedom factor, F,
which limits the maximum angle of deviation for each radial. The
final shape of the road is a result of terrain deviation and the
selected pattern is followed only as strictly as the freedom factor
dictates it to be followed.

Figure 33: Lot Division Stages [18]

Figure 34: Results clockwise: Population-Based Template, Radial Mode,
Raster Mode and Mixed Mode. [18]

Discussion
1. Realism: The applied template technique reflects the patterns

found in cities but the results do not achieve the complexity
and scale of real city road networks. The compound pattern
aims to overcome the simplicity of the single patterns by
combining a number of patterns, similar to a real city, but
only combines two which is insufficient for the complexity of
modern cities.

2. Scale: The examples shown in Figure 34 demonstrate limited
complexity and are insufficient in scale to be classed as city
scale road networks.

3. Variation: A choice of four templates is demonstrated and
each can be deformed by the random terrain providing limited
though varied output.

4. Input: Several inputs are required including geo-statistical
data such as terrain height maps, a standard geographic map
and a population density maps for the population based
template.

5. Efficiency: No information is provided on the performance of
the generation process.

6. Control: A reliance on statistical data and no indication of
any user interaction to control the road network generation
would imply that this solution is very rigid and inflexible.

7. Real-time: No real-time features or rendering optimisations
are discussed.

 3.5 Split Grammars
The Instant Architecture solution presented by Wonka et al. at
Siggraph 2003 describes the generation of realistic buildings
through the use of a new type of formal grammar called split
grammars. These grammars are based on the concept of shape
[11].

Buildings: Split Grammars
Split grammars are based upon the previous research and
principles of shape grammars pioneered by Stiny[30]. A shape
grammar is a formal grammar not unlike L-systems but it is based
on the fundamental primitive of shapes rather than letters or
symbols. Rules or productions map a shape or number of shapes
to be be replaced by another shape or number of shapes. An initial
set of shapes is supplied to start with and the rules are applied in
an iterative manner.

The basic building blocks of the system and the objects that the
grammar manipulates are simple attributed, parametrized, labelled
shapes called basic shapes. A large number of rules or
productions are required to transform the shapes. For the
examples shown in the paper a database of around 200 rules and
40 attributes was assembled. Figure 30 shows an initial state and
simple set of sample rules.

Figure 35: An example of split grammar. [11]

An initial starting state is provided and then transformed in an
iterative process using rules from the database. The rules split
buildings into faces, faces into structural sections, structural
sections into components such as windows and so on, as shown in
in Figure 30 with the end result shown of the completed
derivation in Figure 16.

Figure 36: Completed derivation of the grammar in Figure 30 [11]

Attributes assigned to shapes are propagated from the initial state
down through the system. The attributes store information about
the building like its symmetry, age, use and visual properties.
These are later used to render the building but are also used to
help match transformation rules and find relevant replacements. In
addition, a control grammar is applied that can change the
attributes of basic shapes in order to apply spacial design
concepts, such as setting the first floor of a building to be a shop

or applying a vertical detail to a column of shapes. The resulting
building models produced by the instant architecture system
contain detailed local details such as window sills but also
distinctive building features such as vertical details on the edges
of buildings.

Figure 37: Screen shot of Instant Architecture [11]

Discussion
1. Realism: The split grammar technique produces very realistic

buildings even going as far as to effectively recreate different
styles of architecture.

2. Scale: The examples shown in Instant Architecture are limited
in scale, they demonstrate the strengths of the system by
creating a small group of buildings in a town square or centre.
A high level of variation is shown in the examples but the
number of buildings is limited and is not of city scale.

3. Variation: Building style varies greatly helping to produce
very realistic output, however it is not clear how many
different buildings types can be produced.

4. Input: The system requires substantial initial input with
samples like those shown in Figure 37 requiring a database
containing approx. 200 rules and 40 attributes, and took
around two weeks to assemble. From this database a variety
of buildings of different styles could be created and the data
could be distributed with the system without requiring the
user to assemble their own dataset.

5. Efficiency: The algorithm although complex is quite efficient
creating buildings of up to 10,000 polygons in around 3
seconds on an Intel Pentium 4 at 2Ghz.

6. Control: No interactive editor or GUI is described but the
split grammar rules can be edited in the database manually.
This process is described as non trivial and requires a level of
expertise and experience using the split grammars. It could
well be a barrier to extending the system. There may also be
constraints on the size of the system and the number of rules
that it can manage with a reservation expressed that some
derived designs may not even make sense if more rules are
added.

7. Real-time: The detailed buildings that the system produces
can be explored in real-time however the number of buildings
on display at any one time is limited. It is clearly a limit of the
system with such a high polygon count. Level of detail
support would be essential to use the system for real-time
applications.

The Instant Architecture solution produces realistic and detailed
buildings but may require a level of expertise to operate that
restrict it to an academic audience.

WIN KS

 START

W

KS

F W

F F F F

 4 Future Research
In Section 3 we reviewed previous research into the procedural
generation of cities. It is important for us to recognise the areas
that can be improved in this research and to identify suitable
candidates for further research. To evaluate the existing research
we studied each city generation technique and assessed the
systems performance according to a common set of criteria:
Realism, Scale, Variation, Inputs, Efficiency, Control, Real-time
provisions. After completing this analysis, we have found that
previous research efforts have made good progress on a number
of difficult goals by achieving a high level of variation, realism
and scale. However, city generation research is by no means
complete and we identified a number of areas which can be
improved on by future research.

An accessible city generation system is difficult if the operation of
the system requires a high level of expertise or if complex input
such as geo-statistical data is a prerequisite to using the system.
The City Engine system [23] is capable of producing visually
sound results but the road network and buildings are generated
using a complex set of rules, images maps and geo-statistical data.
The Split Grammars technique proposed by Wonka et al.[11]
requires the creation of a large set of complex architectural rules
before building generation can begin. The agent based simulation
technique also uses a large and complex set of pre-determined
behaviours to specify how the agents act. Varied results can be
obtained without strictly requiring changes to the city generation
systems. But in order achieve results of a similar quality to some
of the examples shown a level of expertise and in-depth
knowledge of each system is required that is not possible for the
general user.

The existing city generation solutions do not provide interactive,
tactile or close control over the generation process. The grid
layout system proposed by Greuter et al.[19] is very restrictive
allowing only the grid spacing to be adjusted by the user. Growth
based algorithms such as L-systems[23] or agent based
simulation[12] are difficult to control due to their evolutionary
nature. Both growth based generation solutions use a system of
image maps to provide incentives for growth in certain areas of
the city. An additional layer of control is specified in the form of
numerical parameters that influence factors such as road branch
distance, road branch angle, etc. The template based approach
uses a selection of basic procedural templates to create a road
network. The templates cannot be edited by the user and no user
interaction is documented.

A city is a large and complex model and cannot be rendered easily
in real-time on commodity hardware. In order to render such a
complex model, optimization systems such as level of detail,
culling or paging are necessary. Out of the city generation
solutions studied only Greuter's system provides real-time
optimisations via the use of view frustum filling and geometry
caching.[13] The view frustum filling technique is possible by
using a simple regular grid road network but is not applicable in
its current form to more complex road networks.

We have reviewed the city generation systems and discussed
some of the areas that warrant further research. From this
discussion we have obtained a key list of goals for our city
generation solution to build and improve upon existing work.

• Accessible – input data such as geo-statistical data or complex
architectural rules should not be required to use the system.

• Interactive – the system should be capable of fully
autonomous generation but also facilitate interactive control.

• Real-Time – for efficient rendering optimization techniques

like culling, paging and level of detail should be
implemented.

To summarize, the goal for our research is to create a city
generation system suitable for real-time applications that is
capable of creating realistic, varied and large scale cites in an
efficient manner while remaining accessible to non-expert users.

 Our current design comprises of three major components:
primary road generation, secondary road generation and
building generation. All three components are united within a
standalone application providing interactive control over the city
generation process.

The primary road generation component utilises procedural
templates Sun et al. that encapsulate common city road network
patterns such as raster, radial, hierarchical and cellular. In addition
to the previous template based solution the templates are
dynamically editable and form only the high level roads. Each
road network template can be applied to a terrain as an
interconnected graph with edges of the graph, the roads,
automatically deformed by terrain characteristics such as
gradients, water levels and other obstacles. The resultant road
network graph is editable using an interactive 3D interface.
Streets can be added, deleted and moved using junctions as
control points for easy manipulation. Editing the control points
affects not only the primary road network but also the secondary
roads within providing a tactile method to control all road
generation.

Cells resulting from the division of the city by the primary road
network form the basic units upon which the secondary road
generation component operates. A technique similar to that used
in [23] based on L-systems can be applied inside the cell although
several different algorithms including agent based approaches,
and simple procedural templates can be applied within a single
city. Global and local parameters are adjusted to specify the
behaviour of generation algorithms in a citywide and/or local cell
scope. To optimize rendering of the city we propose to page cells
similar to terrain paging, the primary road network forms a
skeleton and the secondary road network cells within can be pre-
emptively generated and loaded on demand using a cell adjacency
model.

Buildings can be placed on the lots created from the secondary
road network and can be constructed using a generative grammar
such as L-systems. Several different building usage types will be
supported including commercial, industrial, and residential.
Building structures are generated at run time and can thus provide
a substantial reduction in memory usage by storing simple
generation data and generating large complex geometry only
when required. This geometry generation can be applied to
construct several variants of buildings depending on the
instantiation parameters used. L-systems refine a basic model into
a complex model by applied a series of productions iteratively. A
range dependant level of detail can be provided by including an
instantiation parameter that specifies the number of L-system
iterations proportional to the distance between the camera and
building.

At present an interactive application has been built that
implements the primary road generation component and partial
secondary road generation enabling basic road network
manipulation and interactive editing. Current work involves
implementing complete secondary road generation and generative
grammars for building generation. Real-Time rendering
provisions including cell paging, runtime geometry generation
and L-system level of detail are currently catered for and we
would like to further explore and test these optimisation schemes.

References
[1] UrbanLab. www.chil.us = Chicago, Illinois, USA. 2006

[2] Pascal Mueller. City Engine Wiki. 2006

[3] . Cellular Texture Basis Functions implementation
DarkTree procedural software.. 2006

[4] Jon Hare. Sensible Software. http://www.purplesensi.co.uk
2006

[5] Interactive Data Visualization Inc.. SpeedTree RT.
http://www.speedtree.com 2006

[6] Ken Musgrave, Pandromeda.. Mojo World Applications.
http://www.pandromeda.com/products/ 2006

[7] http://www.sidefx.com. Side Effects Software.
Manufacturer of Houdini.. 2005

[8] Stefan Greuter, Nigel Stewart, Geoff Leach; 2004. Beyond
the horizon. In Image Text and Sound Conferance 2004, , .

[9] . http://www.planetside.co.uk/terragen. 2004

[10] International Scene Organization. Scene Awards 2004.
http://scene.org/awards.php?year=2004. 2004

[11] Peter Wonka, Michael Wimmer, Francois Sillion, William
Ribarsky; 2003. Instant Architecture. In , Siggraph, .

[12] Thomas Lechner, Ben Watson, Uri Wilensky, Martin
Felsen; 2003. Procedural City Modeling. In , , .

[13] Greuter S., Parker J., Stewart N., and Leach G.; 2003.
Real-time procedural generation of `pseudo infinite' cities. In
Proceedings of GRAPHITE 2003, ACM Press, 87-95.

[14] Sylvain Lefebvre, Fabrice Neyret 2003. Pattern Based
Procedural Textures.

[15] Javier Lluch, Emilio Camahort, Roberto Vivó; 2003.
Procedural Multiresolution for Plant and Tree Rendering. In , , .

[16] John Spitzer, Simon Green and NVIDIA Corporation;
2003. Noise and Procedural Techniques. In Proceedings of
Game Developers Conference 2003, GDC, .

[17] David S. Ebert; F Kenton Musgrave; Darwyn Peachy; Ken
Perlin; Steven Worley; Texturing & Modelling - A Procedural
Approach. Morgan Kaufmann 2003.

[18] Jing Sun and Xiaobo Yu and George Baciu and Mark
Green; 2002. Template-based generation of road networks for
virtual city modeling. In , , .

[19] Stefan Greuter, Nigel Stewart, Jeremy Parker, Geoff Leach;
2002. Undiscovered Worlds - Towards a Framework for Real-
Time Procedural Gener.... In MelbourneDAC 2003
Proceedings, ACM Press, .

[20] Wolfgang von der Linden, Ewald Schachinger.
Computersimulations.
http://itp.tugraz.at/LV/wvl/Comp_Simulationen/. 2002

[21] Evan Hart, ATI Research; 3D Textures and Pixel Shaders,
ShaderX vertex and pixel tips and tricks.. 2002.

[22] TomasAkenine-Möller, Eric Haines; Real-Time Rendering.
A K Peters, Ltd. 2002.

[23] Yoav I H Parish, Pascal Mueller; 2001. Procedural
Modeling of Cities. In , , .

[24] Ken Perlin. Making Noise,

http://www.noisemachine.com/talk1/index.html. 1999

[25] Michael F. Barnsley; Fractals Everywhere. Morgan
Kaufman 1993.

[26] Lindenmayer and Prusinkiewicz; 1990. The Algorithmic
Beauty of Plants.

[27] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al.; The
Algorithmic Beauty of Plants. Springer-Verlag 1990.

[28] Ken Perlin; 1985. An Image Synthesizer, in Proc ACM
SIGGRAPH. In , , 287-296.

[29] Benoit B. Mandelbrot; The Fractal Geometry of Nature.
W.H. Freeman & Co. 1982.

[30] Stiny, G.; Introduction to shape and shape
grammars..Environment and Planning B 1980.

[31] Alexander C, Ishikawa S, Silverstein M; A Pattern
Language: Towns, Buildings, Construction. Oxford University
Press 1977.

[32] A. Lindenmayer; Mathematical models for cellular
interaction in development, Parts I and II. 1968.

[33] Kevin Lynch; The Image of the City. Cambridge: MIT
Press 1960.

	Noise Function
	Interpolation Function
	Turbulence
	Road Network: Grid Layout
	Buildings: Geometric Primitives
	Discussion
	Road Network: L-systems
	Buildings: L-systems
	Discussion
	Road Network: Agent Based Simulation
	Buildings: Agent Based Simulation
	Discussion
	Road Network: Template Based Generation
	Discussion
	Buildings: Split Grammars
	Discussion

