
Abstract
Contemporary 3D games are often situated within large urban
environments. This necessitates a time-consuming and expensive
content creation process involving the modelling of vast amounts
of geometric detail: including terrain, roads, buildings, and other
associated features. We present a system called Citygen that aims
to automate as much of this as possible by employing procedural
generation methods to rapidly create the urban geometry typical
of a modern city. Procedural methods have long been used within
the graphics and game development communities to generate
natural phenomena such as plants and trees. We employ these
methods to generate the underlying road networks that form the
structure of cities and urban neighbourhoods. These road
networks are automatically mapped to any supplied terrain model,
and adapt themselves to the specific geometry of the underlying
terrain. Building footprints are automatically extracted from the
resulting model and buildings can then be inserted either
procedurally or by hand. Our system is unique in that it is
designed to allow developers hands-on interactive control over the
generation process. We achieve this by providing an interface
allowing the user to directly manipulate geometric elements such
as road intersection nodes, and to directly control and specify
many aspects of the procedural generation. The results are
updated in real time, thus facilitating an interactive design
process.

 1 Introduction
Continuing improvements in technology and computing power
mean that more and more detail, realism and scale are possible in
games and other interactive graphics applications. The game
industry is presented with a major challenge to create content that
matches the expanded parameters of what is now possible on the
latest hardware. This problem is exacerbated by consumers
demanding a quality of content that reaches the bar set by the
largest projects and the result is that everyday production costs are
spiralling out of control. Related industries that also employ
computer generated graphical content, such as the film industry,
face similar challenges.

A common approach to the content creation problem is to simply
increase the number of artists working on a project to produce
larger, more detailed and more realistic content. However,
increasingly the artistic pipeline is not scaling, meaning that

additional artist numbers do not generate a proportional yield of
content. The result of this is that time and money that could have
been allocated to improving game play or adding innovative
features are lost on content creation.

A potential solution is the application of procedural techniques.
These methods employ algorithms to automatically generate
assets and have been used for over 20 years in the field of
computer graphics [12]. A wide range of applications exist:
adding noise to existing textures [18], creating 3D textures of
natural materials such as marble and wood [16], visualising life-
like models of various tree and plant species [17] and generating
detailed cellular textures such as skin or bark [12]. Recently
procedural techniques have been expanded to construct geometric
assets[4][17][6] and entire procedural worlds are now possible[3].

Existing procedural solutions primarily focus on the generation of
natural phenomena[4]. Our work aims to apply similar methods to
the generation of man-made phenomena, and focuses in particular
on the creation of procedurally generated cities for use in games
and graphical applications.

Cityscapes are rich in visual and functional complexity and are a
result of evolution over hundreds of years under the influence of
countless factors. Some of the major influential factors affecting
cities include population, transport, environment, elevation,
vegetation, geology and cultural influence.[21][20] It is a difficult
challenge for researchers and developers to create a realistic
model of such a large and complex system. We aim to develop an
accessible interactive software system that can automatically
generate realistic, detailed and varied models of a city suitable for
use in real-time rendering.

 1.1 Citygen System
We present a system called Citygen that employs procedural
techniques to generate cityscapes for use in games and other
graphics applications. A key design goal of the system was that it
would allow the user close control over the generation process by
means of direct manipulation of generation algorithm parameters
via an accessible and intuitive visual interface. Furthermore it was
regarded as crucial that the results of these manipulations would
be computed and rendered in real time so that the user gets
immediate feedback on their effect. This is what we mean when
we state that Citygen is an interactive procedural city generation
system. The motivation for this is so that an iterative design
approach can be followed. The user can engage with the system
by tweaking parameters, see their effect immediately, tweak
again, and so on. This process can be continued as long as
necessary until the desired results are obtained.

We divide the city generation problem into three stages:

1. Primary Road Generation

2. Secondary Road Generation

3. Building Generation

Citygen: An Interactive System for Procedural City Generation
George Kelly

kellygp@gmail.com
Department of Informatics

Institute of Technology Blanchardstown, Ireland

Hugh McCabe
hugh.mccabe@itb.ie

Department of Informatics
Institute of Technology Blanchardstown, Ireland

mailto:hugh.mccabe@itb.ie
mailto:kellygp@gmail.com

Primary roads are the main traffic flow arteries of the city whose
function it is to transport people around the city and from one
district to another (e.g. main roads, motorways etc). Secondary
roads are the roads inside the areas enclosed by primary roads and
their function is to service districts. Buildings are situated on the
areas enclosed within secondary roads.

The essential character of a city is often dictated by the pattern of
the primary road network (grid-like, radial etc..) and therefore
Citygen uses this as the starting point of the generation process.
The user can create, and manipulate, a graphical representation of
a primary road network. Vertices of the primary road graph are
called nodes and act as control points, they can be added, moved,
deleted and so on. The roads which connect these nodes are
procedurally generated by the system, mapped to the underlying
terrain model, and rendered in real time.

Once a region is enclosed the secondary road network generation
process is initiated automatically. Our system contains a variety of
road network patterns and the user can choose which road
network pattern to use based on the results desired (for example,
grid-like streets or meandering suburban roads) and assign
different patterns to different parts of the city. Several pattern
presets are defined for convenience and each can be easily
modified to alter the efficiency, connectivity, scale and flow of
the resulting road network. Once again, the results are computed
and rendered in real time allowing direct interactive manipulation
of the process.

The final stage of generation is the construction of buildings. In
order to accomplish this it is necessary to compute building
footprints onto which the buildings should be placed. This is done
by calculating all the enclosed areas between secondary roads and
then subdividing them into lots. The buildings are then placed
within the lots and the relevant materials are applied to the
generated geometry. During the generation process the user can
make changes to any stage and see the result of the changes
propagated through in real-time.

 1.2 Related Research
Other researchers have tackled this problem with varying degrees
of success. The most well known and perhaps most significant
research has been carried out by Parish, Müller and colleagues on
the CityEngine[15], a system that is capable of producing
realistic and detailed models. The generation algorithms are
inspired from the modelling of natural phenomena with string
grammars[17][4] and L-systems are applied with geo-statistical
image maps to construct road networks and buildings[15]. Our
work is strongly influenced by the CityEngine, although we do
not use string grammars or image maps our secondary road
generation is based on parallel growth and our lot division
employs a similar subdivision technique.

Procedural building generation has focused on the application of
grammars to describe structure, like the Shape Grammars original
proposed by Stiny[19]. These have been applied in various guises
to the construction of building geometry[11]. In [3], Müller and
Wonka define a specific grammar to characterize building
structure. This system defines rules to operate on shapes and is
applied to create a range of detailed buildings in several
architectural styles. Recently this approach has been extended to
employ imaging techniques to aid in the acquisition of generation
rules from existing building façades [2].

Other approaches include the application of intelligent agents,
real-time frustum filling and template based generation. Ben
Watson et al. to simulate the evolution of cities by modeling land

use and evolving a city usage map over time that can be used later
to create a city scape[8][10]. Real-time city generation has also
been attempted, Greuter et al. implement a city generation system
that fills the view frustum rapidly with buildings of shape
combinations but placement is restricted to a road network
consisting of a regular grid[14][7][9]. Sun et al.[13] propose the
application of templates that encapsulate patterns such as raster
radial to generate road networks.

Urban Design and Architecture authors have discussed the
patterns, constituent components and perception of cities. In [21],
Lynch writes about the image of the city and human perception,
he itemises constituent elements of cities such as paths, edges,
landmarks, nodes and regions. Alexander et al. document a
number of patterns found in neighbourhoods, public areas and
buildings [20]. The principles discussed provide an insight into
the design of urban spaces and have direct applications for the
generation of cities.

 1.3 Overview
The rest of this paper is structured as follows. In Section 2 we
describe the algorithms and techniques involved in representing,
generating and manipulating primary road networks. This
includes an efficient graph data structure for encoding the
network, and a set of sampling algorithms for computing road
trajectories that follow underlying terrain in a natural and
convincing way. Section 3 deals with the generation of the
secondary roads. This involves the use of a Minimum Cycle Basis
(MCB) algorithm to compute cells in the primary road graph and
a set of generation algorithms for filling these cells with realistic
looking secondary roads. In Section 4 we deal with the issues
involved in building generation, focussing on how to solve the
problem of computing lots and building footprints in an efficient
manner. Section 5 presents some results and analyses the output
of the Citygen system. Section 6 concludes and suggests some
directions for further development.

 2 Primary Road Network
Road networks are represented as undirected planar graphs and
are implemented as adjacency lists. An adjacency list contains an
entry for each node and each of these entries comprises of a list of
nodes that this node is directly connected to (see Figure 1). This
data structure provides an efficient way to store, edit and perform
operations on graph representations of road networks.

Figure 1 Adjacency List

These structures form the basis for all of our road network graphs,
including both primary and secondary roads. We use two different
graphs to store data solely for the primary road network and each
neighbourhood region also uses an additional graph to store data
for it’s secondary road network.

We call the two primary road network graphs, the high level
graph, and the low level graph. The nodes of the high level graph
correspond directly to primary road intersections and an edge
between two nodes indicates that these nodes are connected
together with a primary road. So, in other words it stores the
topological structure of the primary road network. The low level
graph defines the actual path each road takes across the terrain. It
will also have nodes corresponding to primary nodes but also
many more nodes between these indicating points on the terrain
through which the road passes. By keeping the high level
topological road graph separate from the low level graph, we
minimise the data set for processing and provide a means for the
efficient extraction of connectivity information.

Figure 2 Primary road network graphs, Yellow: High level graph, Red:
Low-level graph, Orange: Plot samples and interpolation spline.

Nodes of the high level graph function as control nodes and can
be interactively manipulated within the application in order to to
adjust the topography of the primary road network. The nodes and
edges of the low level graph are then computed by the system
using the sampling, plotting and interpolation processes to
construct the actual road routes through the terrain. We call these
adaptive roads. After each manipulation the low level road graph
contains the data required to render the roads. The manipulations
of control nodes in the topological graph take place in a graphical
interface with a real-time display of the final adaptive roads.

 2.1 Adaptive Roads
The concept behind adaptive roads is to fit road segments into the
surrounding environment and ensure that the roads reflect the
world in which they occupy. This is accomplished by plotting the
road automatically using a sampling technique and various
plotting strategies to adapt the roads to the terrain. In practice, to
use adaptive roads, the user simply positions the source node and
destination node of the road. These nodes correspond to the
control nodes of the high level graph. The system then plots the
path in real-time, providing immediate feedback and tactile
control for the user to fine tune each segment. In addition
constraints are employed to maintain the integrity of the road
graph. Each proposed segment is automatically snapped to
existing infrastructure whenever possible. Aside from aiding the
user to rapidly create a road graph, these constraints ensure that
the user cannot create an invalid road segment or leave the road
graph in an unusable state. By fitting each road to the
environment a sense of cohesiveness is achieved in the resulting
road network, along with increased realism and character.

 2.2 Sampling
Roads are plotted by starting from a source point and sampling a
set of points at regular intervals to define a set of possible paths to
the destination. The road graph is stored as an undirected graph
and the plotting operation is designed to be commutative
(i.e. plot(a→b) == plot(b→a)). The algorithm operates
bidirectionally with sampling starting simultaneously from both
the source node and the destination node and then finally
terminates by meeting in the middle.

Parameters used to control the size of the samples, the number of
samples taken and the maximum deviation allowed from the
target direction.

dSAMPLE : sample size
nSAMPLE : number of samples
θDEV : angle of deviation

Each control point travels a distance dSAMPLE and deviates from the
direction of the destination point less than an angle θDEV. A set of
possible control points is obtained from a fan of nSAMPLE evenly
spaced samples which are evenly distributed over an arc of degree
2θDEV .

Figure 3 Road interval sampling

The road plotting process is complete when a sample is within a
constant dSNAP of the destination point, this is guaranteed by
ensuring θDEV < 45o and dSNAP > dSTEP*cos(θDEV). By limiting the
deviance angle of the road samples the resulting roads are free to
meander when necessary but not without purpose as they are
bounded to travel towards their goal.

When the sampling is complete and the path has been plotted, the
selected samples are inserted into a Catmull Rom spline where
fine grained segments can be interpolated and extracted for
insertion into the low level road network graph for final rendering.

src

dstDEVθ
DSTdPROGRESSd

DSTd

0 1

2 3

4

5

0

1

2

3

4

5

3

3

3

0

3

4

1 2 4

52

 2.3 Sample Selection Strategies
Different selection strategies are employed to choose the samples
acquired in the sampling process. Samples are primarily selected
from the elevation difference between the sample and the previous
plot point. In some strategies additional measurements are taken
into account. A number of these different sample selection
strategies are shown in action in Figure 4 and explained below.

Figure 4 Adaptive roads in Citygen. Blue - Minimum Elevation,
 Red - Least Elevation Difference, Green - Even Elevation Difference.

Minimum Elevation Strategy: This is the most basic strategy in
which the sample with the lowest elevation is selected resulting in
a road path similar to the route a river or a stream would take.

Minimum Elevation Difference: A more competent strategy
than the first, this strategy avoids elevation drops or rises, and
seeks to maintain an even elevation for the complete road
segment. However a problem can occur when constructing roads
between a source and destination node with a large elevation
difference. In this case the Minimum Elevation Difference strategy
will avoid the required ascent and descent until the last step when
it has to join in the middle. On certain terrains this can result in a
road with two smooth road sections and a steep section joining the
two.

Even Elevation Difference: To improve on the Minimum
Elevation Difference strategy a technique with some more
foresight was required. This is the impetus for the Even Elevation
Difference strategy which aims to plot an even and smooth path
for the road by looking ahead and re-evaluating the elevation goal
as it progresses. This strategy operates by calculating the
elevation difference between the current position and goal
position. Based on the progress being made towards the goal, the
algorithm seeks to ascend or descend its even portion of elevation
for each plot point.

The Even Elevation Difference strategy selects the sample which
has the minimum difference between distance covered and
elevation ratio, and the goal distance and elevation ratio.

MinAbs(elevationSTEP / dPROGRESS - elevationDEST / dDST)

Each sample aims to cover an even portion of the total road
elevation. The resulting roads are smooth curves that meander
when necessary weaving through hilly terrain and searching for
even paths to ascend or descend large elevation differences.

 3 Secondary Road Generation
Secondary roads service the local area within districts by
providing access to and from the primary road network. In our
system, districts are the regions of the terrain enclosed by primary
roads. We call these city cells and they form the basic units upon
which the secondary road generation process operates. The
generation of the secondary road network within cells is
accomplished using a growth based algorithm similar to the L-
systems technique applied extensively to the generation of natural
phenomena. There are important aspects to this process that will
be described:

City Cell Extraction: How do we extract the city cells from the
primary road network graph?

Secondary Road Growth: How do we generate a range of road
patterns in the secondary road network within these cells?

Snap Algorithm: How do we obtain information on the
intersection status and proximity to existing roads from the
network in an efficient manner.

 3.1 City Cells
City cells are formed from the enclosed regions of the primary
road network. These regions can be determined by extracting the
closed loops from the high level primary road graph. To extract
the cells we execute a Minimum Cycle Basis (MCB) algorithm on
the primary road network and store the cell data in self contained
units. Our design enables the efficient parallel execution of road
generation within cells by ensuring that all cells are self contained
and that the shared data is minimal.

City cell boundaries are extracted using a Minimum Cycle Basis
(MCB) algorithm executed on the road network graph. The MCB
is defined as the unique set of minimum cycles in a graph that all
other cycles can be constructed from. There are numerous
algorithms available to compute the MCB but few take the
position of vertices into account, instead operating solely on the
structure of the graph.

Figure 5: MCB algorithm illustration

The MCB algorithm used in Citygen is that described by David
Eberly in [5]. Our implementation of the algorithm works by first
sorting the nodes by the x location and then extracting cell cycles
in a left to right order. Cycles are extracted by using the clockwise
orientation of edges to prioritise exploration paths. As cycles are
found they are marked and removed from the graph so as not to
influence further searches. Filaments are ordered sequences of
vertices where the end vertices are either end points or branch
points and those in the middle have exactly two adjacent
vertices[5]. In Figure 5 the cycle {1,3,10,9,4} is first extracted
and the edges are marked cycle edges, then edge {1,3} is removed
and filaments connected to vertices 1 and 3 are removed and not

y

x

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

stored as they part of a cycle. This brief outline is included to
provide an insight into the operation of the algorithm, for a
detailed explanation of the algorithms operation see [5].

After the cycles and filaments have been extracted, their
containing cycles are determined and the data is grouped and then
stored in a cell data structure. Each cell is self-contained and
consists of a private road graph with the boundary cycle, filament
roads and a small set of parameters to control road generation. As
a result of this self contained design, it is possible for secondary
road generation to be executed efficiently in parallel. Parallel
generation of cells is currently implemented for multi-core
systems running Citygen, but has a clear path to be extended
further to use GPGPU programming.

 3.2 Secondary Road Growth
Once a city cell is created, the generation of secondary roads is
initiated within it using a growth based algorithm. The choice of
using a growth based algorithm was based on success of the prior
L-system work of Prusinkiewicz on plants[17] and Müller on city
generation[15]. Although our application does use L-systems it
shares the concept of parallel growth. Our generation algorithm is
distinct in that it is computationally efficient and contains a
number of optimisation to enable it to run in real-time. The
generation is flexible producing a wide range of output and
functions by adding road segments in a parallel fashion similar to
organic growth.

Generation
Road construction begins from the bordering primary boundary
roads and grows inwards in a parallel fashion. The starting point
for the initial road segment is obtained using a deviated midpoint
from a selection of the longest sides in any given cell. Road
growth is checked by an extensive snapping algorithm that
provides information on intersections and on the proximity to
neighbouring segments and nodes. Using this information the
generation component can intelligently modify each proposed
segment and join to the existing network or discard them if they
do not meet the criteria set by the cell parameters.

Figure 6: Road Growth 10, 100, 300 & 1000 steps.

Road generation is sensitive to existing infrastructure and new
segments can connect to, and extend, existing roads. Each cell has
a control parameter set, whose values are fed into the growth
algorithm in order to control the generation process. This allows

the user to create a range of road network patterns on a cell by cell
basis. Control parameters used for road generation include
segment size, degree, snap size and connectivity.

Segment size controls the size of each proposed segment and
hence granularity of the neighbourhood road network. Small
segment sizes result in tightly packed streets whereas larger ones
will give a more sparse road network. Degree controls the number
of times a road branches at any given node. Snap size alters the
distance threshold used to connect to existing infrastructure and
hence influences the efficiency of the road network. The
connectivity parameter changes the probability that segments will
connect together thus affecting road network flow.

A deviance parameter partners each control parameter and
enables relevant noise to be introduced by altering the parameters
at each step of road generation. The cell seed is passed to the
random functions at each step and governs the alteration of
parameters ensuring that generation is 100% reproducible.

Using this concise parameter set a range of different road patterns
can be constructed, from the regular raster patterns typical of
modern city centres, to the random meandering patterns of
organic development.

Figure 7: Road network pattern: Raster, Industrial and Organic

Citygen provides an accessible environment in which the
secondary road generation process is easy to control and suitable
for non-expert users. Parameters are easily accessible via a
property inspector and be modified with their effect viewable in
real-time.

Figure 8: Citygen: a cell is been selected and the control parameter set is
displayed in the property inspector which is bordered in red.

 3.3 Snap Algorithm
Snapping is a process in which
proposed road segments are checked
against the existing road network.
The snapping algorithm calculates
information on the proximity and
intersection status of a proposed
segment relative to segments in the
local road network graph. Road
segments are refined based on the
result returned from the snapping
algorithm to the generation
component. Figure 9 illustrates the
desired snap area for a proposed
segment ab with a diameter set by the snap size parameter. Any
existing segment that may intersect with the proposed segment or
is within a defined distance shall cause a snap event to occur.
Several events may occur for a single proposed segment but only
one will be reported. Events are prioritised closest to the root a of
the proposed segment ab.

In order to calculate snap information for an area similar to that
illustrated in Figure 9 a number proximity and intersection tests
are required. This series of operations is normally computationally
intensive but a number of optimisations have been devised that
alleviate the burden significantly.

Figure 10: Tests used to retrieve information about proposed segment snap
status. The proposed segment is coloured green, segments or node

currently being tested are coloured red and inactive components grey.

The first optimisation is to order the tests so if a snap event occurs
in Test 1 or Test 2 then the entire series of Test 3 checks will not
be able to provide a snap event closer to the root node and hence
is not required and not executed. The second optimisation is to
include node to node testing in Test 1 and execute this test only
when is has been determined that a positive result is probable. The
third optimisation is to store the initial results of Test 1 in the
graph data structure and then use this information to exclude
segments from testing in Test 2. These optimisations are
explained in more detail in the following outline of the algorithm.

Test 1: Proposed Segment Distance to Nodes
The distance is calculated between nodes in the road graph and
the proposed segment ab and is compared to the snap size.

Firstly, the location of the nodes perpendicular to the line is
calculated and a scalar value r is determined, if r is zero then the
node is located nearest to the root a of the proposed segment, if r
is one it is located at the head b. Using the value of r a check is
made to see if the node is located within the line segment ab or
outside on an extension of ab. In order to optimise the testing
procedure, distances tests normally required between node b and
other nodes can be excluded by requiring that r indicates the
nodes are within the purple region shown in Figure 9 before

testing. The scalar r is also used to prioritise events closest to the
root, this is illustrated in Figure 9, Test 1 where the snap event at
d has precedence over e. As a further optimisation when a snap
event occurs any tests that cannot yield a better result are
excluded, for example in the case of a snap event at node d or e,
the Test 3 series would not be executed.

A scalar s is also calculated and used to determine the distance
between node c and segment ab. If this distance is less than a set
snap size a node snap event will be produced. In addition the
scalar s indicates which side of the segment the node is located on
and the values of r and s for each node are stored regardless of
whether or not a snap event occurs.

Figure 11: Node data from test 1 is used optimise test 2 excluding 98% of
segment test during secondary road generation in a typical city cell.

Test 2: Proposed Segment Intersection Test
An optimisation has been developed to only execute the segment
intersection test when an intersection is probable. For each road
segment the node data stored in Test 1 can be accessed efficiently
using the road graph data structure. From this data we can deduce
if an intersection is probable: if both nodes are on the same side of
the proposed segment or if both node perpendiculars are
positioned on the same extension of segment ab then an
intersection is not possible. In addition if a snap event occurred
previously the maximum value for r is reduced to the lowest r
value for the previous event thus excluding even more segments
from testing. See Figure 11. The application of this optimisation
results in a 98% reduction of all segments intersection tests in a
typical city cell.

Test 3: Proposed Node Distance to Segments
If a snap event occurred in the previous tests then the third test
will not be executed as it cannot return a snap event closer to the
root than the previous tests. However if no snap event is detected
this final test will be executed. Its operation is similar to Test 1
but in this case node b of the proposed segment is tested against
all other segments in the local road graph. The check calculates
the distance between node b and every other line segment cd. If
the distance is within a set snap size a road snap event will be
triggered. Upon further inspection if the snap point on the
neighbouring segment is within a set snap size of the defining
nodes a node snap event will be raised.

After the snap algorithm has completed it analysis of the proposed
segment in relation to the existing road network a result
containing the snap event, location and a reference to the node or
road involved. The road generation algorithm decides on what
course of action to take based on this result.

Figure 9: Snap area

b

Sn
ap

 S
iz

e

a

a

c d

c d

b

a

e

b

a

c d

b

e

Test 1 Test 2 Test 3

b

a

r ≤ 1

r ≥ 0

r = (cx-ax)(bx-ax) + (cy-ay)(by-ay) / L2

s = (ay-ay)(bx-ax) - (ax-cx)(by-ay) / L2

L

c

b

a

r ≤ 1

r ≥ 0

s < 0 s > 0
s < 0 s > 0

r ≤ lowest_r
r ≤ lowest_r

L

 4 Building Construction
The building construction stage of Citygen is accomplished in
three stages. Firstly the enclosed regions are extracted from the
secondary road graph by applying the Minimum Cycle Basis
algorithm as described previously in Section 2. Secondly the lots
are identified by splitting the regions into minimal tracts or
parcels of land suitable for development. Thirdly and finally the
buildings are selected based on their control parameters and
constructed in the boundaries of the lots and textured accordingly.

 4.1 Blocks
Blocks represent the enclosed regions of the secondary road
network. The role of the block is to add any extra geometry such
as footpaths, signposts, traffic lights or post boxes onto the region
before lot subdivision occurs. Currently only footpaths are
implemented by applying a simple inset to the boundary polygon.

 4.2 Lot Subdivision
The lot division process operates on the region boundary deifned
in the city block. A subdivision algorithm is applied based on that
described by Mueller et al. in [15] but without the requirement for
regions to be convex. Both concave and convex boundaries are
supported in our implementation and as a result it is possible to
extract valid lots from complex regions and even facilitate the
presence of filament roads. This enables us to apply the technique
to suburban areas and support filament roads.

Figure 12: Lot Division Algorithm

The algorithm works by subdividing each region and operates
recursively until a target lot size is reached. Each split operation is
executed using the perpendicular of the longest side. Steps
required to complete a single region split are as follows:

1. Identify the longest side beyond the target lot size and
calculate the perpendicular from a deviated midpoint to
split the polygon. The deviation introduces reproducible
noise for more natural looking lots.

2. Calculate the intersection points between the line and
the boundary and store them in the order encountered
with each polygon index included. {a:2, b:7, c:9, d:14}

3. Process the intersection segments excluding those
outside the polygon and construct a data structure to
provide a graph for the polygon. {c→b, a→d}.

4. Merge the intersection graph with the polygon and
extract the cycles from the graph.

The lot division algorithm works fine for Manhattan like regions
where the input data is generally regular and block shaped.
However when the algorithm was initially tested on suburban road
networks the resulting lots were angular and irregular. To combat

this and provide realistic lots for suburban networks a
modification was made to the lot division process in which
division was first prioritised along sides with road access. As a
result of this change almost all lots were oriented perpendicular to
their access road reflecting the conditions found in the real world.
In a similar fashion the value of lots for development is calculated
taking appurtenances into account as used in the real-estate
industry. Lots without road access are not considered suitable for
building development and are discarded or destined for green
space.

Figure 13: Down-town and Suburban lots in Debug View

 4.3 Building Generation
Buildings are generated on the lots created by the lot subdivision
process. Hints are attached to each neighbourhood as part of the
control parameter set and advise the building generation
algorithm on what class of building to be generated and how it
should be positioned on the lot. Down-town buildings attempt to
make maximum use of lot space while suburban buildings retreat
in from their road access side and also from each other to make
room for a garden area. Industrial building retreat in from their
boundaries to emulate the green space found in industrial estates.

Building construction begins with the positioning of the building
footprint on the lot by in-setting the polygon boundary of the lot.
After the footprint has been calculated is is then extruded upwards
to produce a solid object. The geometry of the buildings is very
basic but with the aid of normal maps we can simulate extra
geometry on the building. Figure 14 shows a typical texture tile
and associated normal map for a building.

Figure 14: Building Texture, Normal Map and the resulting building
after the material has been applied.

0

3

4
5

6

7

9

10

11

14

abc
d

8 2 1

12 13

 5 Results
In this section we show Citygen in action and introduce the user
interface. We also present several screenshot images displaying
generated cities that were created in Citygen being rendered in
real-time within the application.

Interface
Citygen is an interactive application that provides a complete
integrated workspace for city generation. The application is
designed to be accessible and easy to use, expert knowledge is not
required and it is suitable for artists and non-technical staff. Cities
are edited and view using a point and click interface similar to a
3D editor and the application interface is structured simply with
three main editing modes: node, road and cell. Each mode has an
associated set of tools and property inspector to view and modify
parameter values. There is no need for a preview mode as the
application provides a live real-time 3D view of the world using
the built-in game engine[1] which is used throughout the
generation process.

Output
Figure 16 displays a screenshot of a generated test city. The city
model shown contains over 24,000 buildings and the complete
generation time for the city including adaptive roads, secondary
roads and buildings is only 3.5 seconds. The buildings are
currently textured using only a small number of materials. Further
building textures have not been added due to time constraints,
however the application does provide a facility for the user to add
their own materials.

Even with this amount of geometry the city is navigable at frame
rates and can be still be edited interactively.
Note: Metrics were taken from Citygen running on a laptop with the following specifications: Intel Core Duo @

2.33Ghz, ATI X1600, 1GB RAM.

 6 Future Research
At present we have developed an system that implements the
generation of primary roads, secondary roads and buildings in an
interactive accessible manner. Although we are pleased with
performance and output of the system a number of areas for
improvement and future research can be suggested.

The system provides a set generation parameters and deviation
values from which a normal random distribution is generated. If
specialised distributions were to be used by acquiring statistical
data from existing city patterns then the generation system would
be able to create more realistic cityscapes with little additional
computation required. An example of this is building height,
currently the system generates an even distribution of heights
when a more realistic solution could be mostly short buildings
with a few skyscrapers. Research is required to acquire the
statistical data and validate this theory but the changes to the
current generation system would be trivial.

Citygen is designed to enable parallel computation whenever
possible and uses multiple threads to exploit multi-core
processors. A logical step forward to accelerate performance
could be to offload this parallel computation on to the GPU where
numerous execution units could help generate a more rich and
detailed city model in real-time.

An obvious improvement to increase the realism of the output is
to introduce a larger and more varied texture set or even
implement a procedural solution. Citygen was developed with a
very limited texture set as it was not the focus of the project,
however there are no technical reasons not to include more
textures only time constraints in creating them. Also
offset/parallax mapping had been implemented as a superior
method to add depth to buildings but lighting problems occurred
preventing its inclusion in the application.

To finish there are several extensions to the real-time rendering
aspect of the system that could be expanded. The graph structures
provide adjacency information for cell, road and blocks. This
information could be exploited to enable features like city cell
paging, a method of geometry paging for cities. These techniques
are of interest to us and it is an area destined for future research.

References
[1] Steve Streeting and JianHua Xie and Phillip Castaneda and

Justin Walsh. Object-Oriented Graphics Rendering Engine.
2007. http://www.ogre3d.org

[2] Pascal Müller and Gang Zeng and Peter Wonka and Luc
Van Gool; 2007. Image-based Procedural Modeling of Facades.
In Proceedings of ACM SIGGRAPH 2007 / ACM Transactions
on Graphics, ACM Press, .

[3] Pascal Mueller and Peter Wonka and Simon Haegler and
Andreas Ulmer and Luc Van Gool 2006. Procedural modeling
of buildings.

[4] Interactive Data Visualization Inc.. SpeedTree RT.
http://www.speedtree.com 2006.

[5] Side Effects Software. Houdini. 2005.
http://www.sidefx.com

[6] David Eberly; 2005. The Minimal Cycle Basis for a Planar
Graph.

[7] Stefan Greuter, Nigel Stewart, Geoff Leach; 2004. Beyond

the horizon. In Image Text and Sound Conferance 2004, , .

[8] Thomas Lechner, Ben Watson, Uri Wilensky, Seth Tisue;
2004. Procedural Modeling of Land Use in Cities. In , , .

[9] Greuter S., Parker J., Stewart N., and Leach G.; 2003.
Real-time procedural generation of `pseudo infinite' cities. In
Proceedings of GRAPHITE 2003, ACM Press, 87-95.

[10] Thomas Lechner, Ben Watson, Uri Wilensky, Martin
Felsen; 2003. Procedural City Modeling. In , , .

[11] Peter Wonka, Michael Wimmer, Francois Sillion, William
Ribarsky; 2003. Instant Architecture. In , Siggraph, .

[12] David S. Ebert; F Kenton Musgrave; Darwyn Peachy; Ken
Perlin; Steven Worley; Texturing & Modelling - A Procedural
Approach. Morgan Kaufmann 2003.

[13] Stefan Greuter, Nigel Stewart, Jeremy Parker, Geoff Leach;
2002. Undiscovered Worlds - Towards a Framework for Real-
Time Procedural Gener.... In MelbourneDAC 2003
Proceedings, ACM Press, .

[14] Jing Sun and Xiaobo Yu and George Baciu and Mark
Green; 2002. Template-based generation of road networks for
virtual city modeling. In , , .

[15] Yoav I H Parish; Pascal Muller; 2001. Procedural Modeling
of Cities. In , , 8.

[16] Ken Perlin. Making Noise,
http://www.noisemachine.com/talk1/index.html. 1999.

[17] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al.; The
Algorithmic Beauty of Plants. Springer-Verlag 1990.

[18] Ken Perlin; 1985. An Image Synthesizer, in Proc ACM
SIGGRAPH. In , , 287-296.

[19] Stiny, G.; Introduction to shape and shape
grammars..Environment and Planning B 1980.

[20] Alexander C, Ishikawa S, Silverstein M; A Pattern
Language: Towns, Buildings, Construction. Oxford University
Press 1977.

[21] Kevin Lynch; The Image of the City. Cambridge: MIT
Press 1960.

