
Abstract
Contemporary  3D games  are  often  situated  within  large  urban 
environments. This necessitates a time-consuming and expensive 
content creation process involving the modelling of vast amounts 
of geometric detail: including terrain, roads, buildings, and other 
associated features. We present a system called Citygen that aims 
to automate as much of this as possible by employing procedural 
generation methods to rapidly create the urban geometry typical 
of a modern city. Procedural methods have long been used within 
the  graphics  and  game  development  communities  to  generate 
natural  phenomena  such  as  plants  and trees.  We employ  these 
methods to generate the underlying road networks that form the 
structure  of  cities  and  urban  neighbourhoods.  These  road 
networks are automatically mapped to any supplied terrain model, 
and adapt themselves to the specific geometry of the underlying 
terrain.  Building footprints are automatically extracted from the 
resulting  model  and  buildings  can  then  be  inserted  either 
procedurally  or  by  hand.  Our  system  is  unique  in  that  it  is 
designed to allow developers hands-on interactive control over the 
generation  process.  We  achieve  this  by  providing  an  interface 
allowing the user to directly manipulate geometric elements such 
as  road  intersection  nodes,  and  to  directly  control  and  specify 
many  aspects  of  the  procedural  generation.   The  results  are 
updated  in  real  time,  thus  facilitating  an  interactive  design 
process.

 1 Introduction
Continuing  improvements  in  technology  and  computing  power 
mean that more and more detail, realism and scale are possible in 
games  and  other  interactive  graphics  applications.  The  game 
industry is presented with a major challenge to create content that 
matches the expanded parameters of what is now possible on the 
latest  hardware.  This  problem  is  exacerbated  by  consumers 
demanding a  quality of content  that  reaches the  bar set  by the 
largest projects and the result is that everyday production costs are 
spiralling  out  of  control.  Related  industries  that  also  employ 
computer generated graphical content, such as the film industry, 
face similar challenges. 

A common approach to the content creation problem is to simply 
increase the number of artists working on a project  to produce 
larger,  more  detailed  and  more  realistic  content.  However, 
increasingly  the  artistic  pipeline  is  not  scaling,  meaning  that 

additional artist numbers do not generate a proportional yield of 
content. The result of this is that time and money that could have 
been  allocated  to  improving  game  play  or  adding  innovative 
features are lost on content creation.

A potential solution is the application of procedural techniques. 
These  methods  employ  algorithms  to  automatically  generate 
assets  and  have  been  used  for  over  20  years  in  the  field  of 
computer  graphics  [12].  A  wide  range  of  applications  exist: 
adding  noise  to  existing  textures  [18],  creating  3D textures  of 
natural materials such as marble and wood  [16], visualising life-
like models of various tree and plant species [17] and generating 
detailed  cellular  textures  such  as  skin  or  bark  [12].  Recently 
procedural techniques have been expanded to construct geometric 
assets[4][17][6] and entire procedural worlds are now possible[3]. 

Existing procedural solutions primarily focus on the generation of 
natural phenomena[4]. Our work aims to apply similar methods to 
the generation of man-made phenomena, and focuses in particular 
on the creation of procedurally generated cities for use in games 
and graphical applications.

Cityscapes are rich in visual and functional complexity and are a 
result of evolution over hundreds of years under the influence of 
countless factors. Some of the major influential factors affecting 
cities  include  population,  transport,  environment,  elevation, 
vegetation, geology and cultural influence.[21][20] It is a difficult 
challenge  for  researchers  and  developers  to  create  a  realistic 
model of such a large and complex system. We aim to develop an 
accessible  interactive  software  system  that  can  automatically 
generate realistic, detailed and varied models of a city suitable for 
use in real-time rendering.

 1.1 Citygen System
We  present  a  system  called  Citygen that  employs  procedural 
techniques  to  generate  cityscapes  for  use  in  games  and  other 
graphics applications. A key design goal of the system was that it 
would allow the user close control over the generation process by 
means of direct manipulation of generation algorithm parameters 
via an accessible and intuitive visual interface. Furthermore it was 
regarded as crucial that the results of these manipulations would 
be  computed  and  rendered  in  real  time  so  that  the  user  gets 
immediate feedback on their effect. This is what we mean when 
we state that  Citygen is an interactive procedural city generation 
system.  The  motivation  for  this  is  so  that  an  iterative  design 
approach can be followed. The user can engage with the system 
by  tweaking  parameters,  see  their  effect  immediately,  tweak 
again,  and  so  on.  This  process  can  be  continued  as  long  as 
necessary until the desired results are obtained.

We divide the city generation problem into three stages:

1. Primary Road Generation

2. Secondary Road Generation

3. Building Generation
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Primary roads are the main traffic flow arteries of the city whose 
function it  is  to transport  people around the city and from one 
district  to another (e.g.  main roads,  motorways  etc).  Secondary 
roads are the roads inside the areas enclosed by primary roads and 
their function is to service districts. Buildings are situated on the 
areas enclosed within secondary roads. 

The essential character of a city is often dictated by the pattern of 
the  primary  road  network  (grid-like,  radial  etc..)  and  therefore 
Citygen uses this as the starting point of the generation process. 
The user can create, and manipulate, a graphical representation of 
a primary road network.  Vertices of the primary road graph are 
called nodes and act as control points, they can be added, moved, 
deleted  and  so  on.  The  roads  which  connect  these  nodes  are 
procedurally generated by the system, mapped to the underlying 
terrain model, and rendered in real time.

Once a region is enclosed the secondary road network generation 
process is initiated automatically. Our system contains a variety of 
road  network  patterns  and  the  user  can  choose  which  road 
network pattern to use based on the results desired (for example, 
grid-like  streets  or  meandering  suburban  roads)  and  assign 
different  patterns  to  different  parts  of  the  city.  Several  pattern 
presets  are  defined  for  convenience  and  each  can  be  easily 
modified to alter the efficiency,  connectivity,  scale and flow of 
the resulting road network. Once again, the results are computed 
and rendered in real time allowing direct interactive manipulation 
of the process.

The final stage  of generation is the construction of  buildings. In 
order  to  accomplish  this  it  is  necessary  to  compute  building 
footprints onto which the buildings should be placed. This is done 
by calculating all the enclosed areas between secondary roads and 
then  subdividing  them into  lots.  The buildings  are  then placed 
within  the  lots  and  the  relevant  materials  are  applied  to  the 
generated geometry.  During the generation process the user can 
make  changes  to  any  stage  and  see  the  result  of  the  changes 
propagated through in real-time.

 1.2 Related Research
Other researchers have tackled this problem with varying degrees 
of success.  The most  well  known and perhaps most  significant 
research has been carried out by Parish, Müller and colleagues on 
the  CityEngine[15],  a  system  that  is  capable  of  producing 
realistic  and  detailed  models.  The  generation  algorithms  are 
inspired  from the  modelling  of  natural  phenomena  with  string 
grammars[17][4] and  L-systems  are  applied  with  geo-statistical 
image  maps to construct  road networks  and buildings[15].  Our 
work is strongly influenced by the CityEngine,  although we do 
not  use  string  grammars  or  image  maps  our  secondary  road 
generation  is  based  on  parallel  growth  and  our  lot  division 
employs a similar subdivision technique. 

Procedural building generation has focused on the application of 
grammars to describe structure, like the Shape Grammars original 
proposed by Stiny[19]. These have been applied in various guises 
to the construction of building geometry[11]. In  [3], Müller and 
Wonka  define  a  specific  grammar  to  characterize  building 
structure.  This system defines rules to operate on shapes and is 
applied  to  create  a  range  of  detailed  buildings  in  several 
architectural styles. Recently this approach has been extended to 
employ imaging techniques to aid in the acquisition of generation 
rules from existing building façades [2].

Other  approaches  include  the  application  of  intelligent  agents, 
real-time  frustum  filling  and  template  based  generation.  Ben 
Watson et al. to simulate the evolution of cities by modeling land 

use and evolving a city usage map over time that can be used later 
to create a city scape[8][10]. Real-time city generation has also 
been attempted, Greuter et al. implement a city generation system 
that  fills  the  view  frustum  rapidly  with  buildings  of  shape 
combinations  but  placement  is  restricted  to  a  road  network 
consisting of a regular grid[14][7][9]. Sun et al.[13] propose the 
application of templates  that encapsulate patterns such as raster 
radial to generate road networks.

Urban  Design  and  Architecture  authors  have  discussed  the 
patterns, constituent components and perception of cities. In [21], 
Lynch writes about the image of the city and human perception, 
he itemises  constituent  elements  of  cities  such as  paths,  edges, 
landmarks,  nodes  and  regions.  Alexander  et  al.  document  a 
number  of  patterns  found  in  neighbourhoods,  public  areas  and 
buildings  [20].  The principles discussed provide an insight into 
the design of urban spaces and have direct applications for the 
generation of cities.

 1.3 Overview
The rest of this paper is structured as follows.  In Section 2 we 
describe the algorithms and techniques involved in representing, 
generating  and  manipulating  primary  road  networks.  This 
includes  an  efficient  graph  data  structure  for  encoding  the 
network,  and a  set  of  sampling  algorithms  for  computing  road 
trajectories  that  follow  underlying  terrain  in  a  natural  and 
convincing  way.  Section  3  deals  with  the  generation  of  the 
secondary roads. This involves the use of a Minimum Cycle Basis 
(MCB) algorithm to compute cells in the primary road graph and 
a set of generation algorithms for filling these cells with realistic 
looking  secondary roads.  In  Section 4 we  deal  with  the  issues 
involved  in building generation,  focussing on how to solve the 
problem of computing lots and building footprints in an efficient 
manner. Section 5 presents some results and analyses the output 
of the  Citygen  system.  Section 6 concludes and suggests  some 
directions for further development.



 2 Primary Road Network
Road networks are represented as undirected planar graphs and 
are implemented as adjacency lists. An adjacency list contains an 
entry for each node and each of these entries comprises of a list of 
nodes that this node is directly connected to (see Figure 1). This 
data structure provides an efficient way to store, edit and perform 
operations on graph representations of road networks.

Figure 1 Adjacency List

These structures form the basis for all of our road network graphs, 
including both primary and secondary roads. We use two different 
graphs to store data solely for the primary road network and each 
neighbourhood region also uses an additional graph to store data 
for it’s secondary road network.

We  call  the  two  primary  road  network  graphs,  the  high  level  
graph, and the low level graph. The nodes of the high level graph 
correspond  directly  to  primary  road  intersections  and  an  edge 
between  two  nodes  indicates  that  these  nodes  are  connected 
together  with  a  primary  road.  So,  in  other  words  it  stores  the 
topological structure of the primary road network. The low level 
graph defines the actual path each road takes across the terrain. It 
will  also  have  nodes  corresponding  to  primary  nodes  but  also 
many more nodes between these indicating points on the terrain 
through  which  the  road  passes.  By  keeping  the  high  level 
topological  road  graph  separate  from the  low level  graph,  we 
minimise the data set for processing and provide a means for the 
efficient extraction of connectivity information.

Figure 2 Primary road network graphs, Yellow: High level graph, Red: 
Low-level graph, Orange: Plot samples and interpolation spline.

Nodes of the high level graph function as  control nodes and can 
be interactively manipulated within the application in order to to 
adjust the topography of the primary road network. The nodes and 
edges of the low level  graph are then computed by the system 
using  the  sampling,  plotting  and  interpolation  processes  to 
construct the actual road routes through the terrain. We call these 
adaptive roads. After each manipulation the low level road graph 
contains the data required to render the roads. The manipulations 
of control nodes in the topological graph take place in a graphical 
interface with a real-time display of the final adaptive roads.

 2.1 Adaptive Roads
The concept behind adaptive roads is to fit road segments into the 
surrounding  environment  and  ensure  that  the  roads  reflect  the 
world in which they occupy. This is accomplished by plotting the 
road  automatically  using  a  sampling  technique  and  various 
plotting strategies to adapt the roads to the terrain. In practice, to 
use adaptive roads, the user simply positions the source node and 
destination  node  of  the  road.  These  nodes  correspond  to  the 
control nodes of the high level graph. The system then plots the 
path  in  real-time,  providing  immediate  feedback  and  tactile 
control  for  the  user  to  fine  tune  each  segment.  In  addition 
constraints  are  employed  to  maintain  the  integrity  of  the  road 
graph.  Each  proposed  segment  is  automatically  snapped  to 
existing infrastructure whenever possible. Aside from aiding the 
user to rapidly create a road graph, these constraints ensure that 
the user cannot create an invalid road segment or leave the  road 
graph  in  an  unusable  state.  By  fitting  each  road  to  the 
environment a sense of cohesiveness is achieved in the resulting 
road network, along with increased realism and character.

 2.2 Sampling
Roads are plotted by starting from a source point and sampling a 
set of points at regular intervals to define a set of possible paths to 
the destination. The road graph is stored as an undirected graph 
and  the  plotting  operation  is  designed  to  be  commutative 
(i.e. plot(a→b)  ==  plot(b→a) ).  The  algorithm  operates 
bidirectionally with  sampling starting simultaneously from both 
the  source  node  and  the  destination  node  and  then  finally 
terminates by meeting in the middle.

Parameters used to control the size of the samples, the number of 
samples  taken  and  the  maximum  deviation  allowed  from  the 
target direction.

dSAMPLE : sample size
nSAMPLE  : number of samples
θDEV  : angle of deviation

Each control point travels a distance dSAMPLE and deviates from the 
direction of the destination point less than an angle θDEV. A set of 
possible control points is obtained from a fan of  nSAMPLE evenly 
spaced samples which are evenly distributed over an arc of degree 
2θDEV .

Figure 3 Road interval sampling 

The road plotting process is complete when a sample is within a 
constant dSNAP of the destination point, this is guaranteed by 
ensuring θDEV  < 45o and dSNAP > dSTEP*cos(θDEV). By limiting the 
deviance angle of the road samples the resulting roads are free to 
meander when necessary but not without purpose as they are 
bounded to travel towards their goal.

When the sampling is complete and the path has been plotted, the 
selected samples  are inserted into a  Catmull  Rom spline where 
fine  grained  segments  can  be  interpolated  and  extracted  for 
insertion into the low level road network graph for final rendering. 

src

dstDEVθ
DSTdPROGRESSd

DSTd

0 1

2 3

4

5

0

1

2

3

4

5

3

3

3

0

3

4

1 2 4

52



 2.3 Sample Selection Strategies
Different selection strategies are employed to choose the samples 
acquired in the sampling process. Samples are primarily selected 
from the elevation difference between the sample and the previous 
plot point. In some strategies additional measurements are taken 
into  account.  A  number  of  these  different  sample  selection 
strategies are shown in action in Figure 4 and explained below.

Figure 4 Adaptive roads in Citygen.  Blue - Minimum Elevation, 
  Red - Least Elevation Difference, Green - Even Elevation Difference. 

Minimum Elevation Strategy: This is the most basic strategy in 
which the sample with the lowest elevation is selected resulting in 
a road path similar to the route a river or a stream would take. 

Minimum  Elevation  Difference:  A  more  competent  strategy 
than the first,  this strategy avoids  elevation drops or rises,  and 
seeks  to  maintain  an  even  elevation  for  the  complete  road 
segment. However a problem can occur when constructing roads 
between  a  source  and  destination  node  with  a  large  elevation 
difference. In this case the Minimum Elevation Difference strategy 
will avoid the required ascent and descent until the last step when 
it has to join in the middle. On certain terrains this can result in a 
road with two smooth road sections and a steep section joining the 
two. 

Even  Elevation  Difference:  To  improve  on  the  Minimum 
Elevation  Difference strategy  a  technique  with  some  more 
foresight was required. This is the impetus for the Even Elevation 
Difference strategy which aims to plot an even and smooth path 
for the road by looking ahead and re-evaluating the elevation goal 
as  it  progresses.  This  strategy  operates  by  calculating  the 
elevation  difference  between  the  current  position  and  goal 
position. Based on the progress being made towards the goal, the 
algorithm seeks to ascend or descend its even portion of elevation 
for each plot point. 

The Even Elevation Difference strategy selects the sample which 
has  the  minimum  difference  between  distance  covered  and 
elevation ratio, and the goal distance and elevation ratio.

MinAbs(elevationSTEP / dPROGRESS  -  elevationDEST / dDST)

Each  sample  aims  to  cover  an  even  portion  of  the  total  road 
elevation.  The  resulting  roads  are  smooth  curves  that  meander 
when necessary  weaving through hilly terrain and searching for 
even paths to ascend or descend large elevation differences.

 3 Secondary Road Generation
Secondary  roads  service  the  local  area  within  districts  by 
providing access to and from the primary road network.  In  our 
system, districts are the regions of the terrain enclosed by primary 
roads. We call these city cells and they form the basic units upon 
which  the  secondary  road  generation  process  operates.  The 
generation  of  the  secondary  road  network  within  cells  is 
accomplished using a growth based algorithm similar  to the L-
systems technique applied extensively to the generation of natural 
phenomena. There are important aspects to this process that will 
be described:

City Cell Extraction: How do we extract the city cells from the 
primary road network graph?

Secondary Road Growth: How do we generate a range of road 
patterns in the secondary road network within these cells?

Snap  Algorithm:  How  do  we  obtain  information  on  the 
intersection  status  and  proximity  to  existing  roads  from  the 
network in an efficient manner.

 3.1 City Cells
City cells are formed from the enclosed regions of the primary 
road network. These regions can be determined by extracting the 
closed loops from the high level primary road graph. To extract 
the cells we execute a Minimum Cycle Basis (MCB) algorithm on 
the primary road network and store the cell data in self contained 
units. Our design enables the efficient parallel execution of road 
generation within cells by ensuring that all cells are self contained 
and that the shared data is minimal.

City cell boundaries are extracted using a Minimum Cycle Basis 
(MCB) algorithm executed on the road network graph. The MCB 
is defined as the unique set of minimum cycles in a graph that all 
other  cycles  can  be  constructed  from.  There  are  numerous 
algorithms  available  to  compute  the  MCB  but  few  take  the 
position of vertices into account, instead operating solely on the 
structure of the graph.

Figure 5: MCB algorithm illustration

The MCB algorithm used in Citygen is that described by David 
Eberly in [5]. Our implementation of the algorithm works by first 
sorting the nodes by the x location and then extracting cell cycles 
in a left to right order. Cycles are extracted by using the clockwise 
orientation of edges to prioritise exploration paths. As cycles are 
found they are marked and removed from the graph so as not to 
influence  further  searches.  Filaments  are  ordered  sequences  of 
vertices  where the  end vertices  are  either end points or  branch 
points  and  those  in  the  middle  have  exactly  two  adjacent 
vertices[5].  In  Figure  5 the  cycle  {1,3,10,9,4} is first  extracted 
and the edges are marked cycle edges, then edge {1,3} is removed 
and filaments connected to vertices 1 and 3 are removed and not 
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stored as they part  of a cycle.  This brief outline is included to 
provide  an  insight  into  the  operation  of  the  algorithm,  for  a 
detailed explanation of the algorithms operation see [5].

After  the  cycles  and  filaments  have  been  extracted,  their 
containing cycles are determined and the data is grouped and then 
stored  in  a  cell  data  structure.  Each  cell  is  self-contained  and 
consists of a private road graph with the boundary cycle, filament 
roads and a small set of parameters to control road generation. As 
a result of this self contained design, it is possible for secondary 
road  generation  to  be  executed  efficiently  in  parallel.  Parallel 
generation  of  cells  is  currently  implemented  for  multi-core 
systems  running  Citygen,  but  has  a  clear  path  to  be  extended 
further to use GPGPU programming.

 3.2 Secondary Road Growth
Once a city cell is created, the generation of secondary roads  is 
initiated within it using a growth based algorithm. The choice of 
using a growth based algorithm was based on success of the prior 
L-system work of Prusinkiewicz on plants[17] and Müller on city 
generation[15].  Although our  application does use L-systems  it 
shares the concept of parallel growth. Our generation algorithm is 
distinct  in  that  it  is  computationally efficient  and  contains  a 
number  of  optimisation  to enable  it  to  run  in real-time. The 
generation  is flexible producing  a  wide  range  of  output  and 
functions by adding road segments in a parallel fashion similar to 
organic growth.

Generation
Road construction begins  from the bordering primary boundary 
roads and grows inwards in a parallel fashion. The starting point 
for the initial road segment is obtained using a deviated midpoint 
from  a  selection  of  the  longest  sides  in  any  given  cell.  Road 
growth  is  checked  by  an  extensive  snapping  algorithm  that 
provides  information  on  intersections  and  on  the  proximity  to 
neighbouring  segments  and  nodes.  Using  this  information  the 
generation  component  can  intelligently  modify  each  proposed 
segment and join to the existing network or discard them if they 
do not meet the criteria set by the cell parameters.

Figure 6: Road Growth 10, 100, 300 & 1000 steps.

Road generation  is  sensitive  to  existing  infrastructure  and  new 
segments can connect to, and extend, existing roads. Each cell has 
a  control  parameter set,  whose  values  are  fed  into the  growth 
algorithm in order to control the generation process. This allows 

the user to create a range of road network patterns on a cell by cell 
basis.  Control  parameters  used  for  road  generation  include 
segment size, degree, snap size and connectivity.

Segment  size controls  the  size  of  each  proposed  segment  and 
hence  granularity  of  the  neighbourhood  road  network.  Small 
segment sizes result in tightly packed streets whereas larger ones 
will give a more sparse road network. Degree controls the number 
of times a road branches at any given node.  Snap size alters the 
distance threshold used to connect to existing infrastructure and 
hence  influences  the  efficiency  of  the  road  network.  The 
connectivity parameter changes the probability that segments will 
connect together thus affecting road network flow. 

A  deviance  parameter partners  each  control  parameter  and 
enables relevant noise to be introduced by altering the parameters 
at  each step of road generation.  The cell  seed is passed to  the 
random  functions  at  each  step  and  governs  the  alteration  of 
parameters ensuring that generation is 100% reproducible.

Using this concise parameter set a range of different road patterns 
can  be  constructed,  from  the  regular  raster  patterns  typical  of 
modern  city  centres,  to  the  random  meandering  patterns  of 
organic development.

Figure 7: Road network pattern: Raster, Industrial and Organic

Citygen  provides  an  accessible  environment  in  which  the 
secondary road generation process is easy to control and suitable 
for  non-expert  users.  Parameters  are  easily  accessible  via  a 
property inspector and be modified with their effect viewable in 
real-time.

Figure 8: Citygen: a cell is been selected and the control parameter set is 
displayed in the property inspector which is bordered in red.



 3.3 Snap Algorithm 
Snapping  is  a  process  in  which 
proposed road segments are checked 
against  the  existing  road  network. 
The  snapping  algorithm  calculates 
information  on  the  proximity  and 
intersection  status  of  a  proposed 
segment  relative  to  segments  in  the 
local  road  network  graph.  Road 
segments  are   refined  based  on the 
result  returned  from  the  snapping 
algorithm  to  the  generation 
component.  Figure  9 illustrates  the 
desired  snap  area  for  a  proposed 
segment  ab with a diameter set by the snap size parameter. Any 
existing segment that may intersect with the proposed segment or 
is  within  a defined distance shall  cause a snap event  to occur. 
Several events may occur for a single proposed segment  but only 
one will be reported. Events are prioritised closest to the root a of 
the proposed segment ab.

In order to calculate snap information for an area similar to that 
illustrated in  Figure 9 a number proximity and intersection tests 
are required. This series of operations is normally computationally 
intensive  but a number of optimisations have been devised that 
alleviate the burden significantly.

Figure 10: Tests used to retrieve information about proposed segment snap 
status. The proposed segment is coloured green, segments or node 

currently being tested are coloured red and inactive components grey.

The first optimisation is to order the tests so if a snap event occurs 
in Test 1 or Test 2 then the entire series of Test 3 checks will not 
be able to provide a snap event closer to the root node and hence 
is not required and not executed. The second optimisation is to 
include node to node testing in Test 1 and execute this test only 
when is has been determined that a positive result is probable. The 
third optimisation is to store the initial  results of Test  1 in the 
graph  data  structure  and  then  use  this  information  to  exclude 
segments  from  testing  in  Test  2.  These  optimisations  are 
explained in more detail in the following outline of the algorithm.

Test 1: Proposed Segment Distance to Nodes
The distance is calculated between nodes in the road graph and 
the proposed segment ab and is compared to the snap size. 

Firstly,  the  location  of  the  nodes  perpendicular  to  the  line  is 
calculated and a scalar value r is determined, if r is zero then the 
node is located nearest to the root a of the proposed segment, if r 
is one it is located at the head b.  Using the value of r a check is 
made to see if the node is located within the line segment  ab or 
outside on an extension of ab.  In  order to  optimise  the  testing 
procedure, distances tests normally required between node b and 
other  nodes  can  be  excluded  by  requiring  that  r indicates  the 
nodes  are  within  the  purple  region  shown  in  Figure  9 before 

testing. The scalar r is also used to prioritise events closest to the 
root, this is illustrated in Figure 9, Test 1 where the snap event at 
d has precedence over  e. As a further optimisation when a snap 
event  occurs  any  tests  that  cannot  yield  a  better  result  are 
excluded, for example in the case of a snap event at node d or e, 
the Test 3 series would not be executed. 

A scalar  s is also calculated and used to determine the distance 
between node c and segment ab. If this distance is less than a set 
snap size  a  node snap event  will  be  produced. In  addition the 
scalar s indicates which side of the segment the node is located on 
and the values of  r and  s for each node are stored regardless of 
whether or not a snap event occurs.

Figure 11: Node data from test 1 is used optimise test 2 excluding 98% of 
segment test during secondary road generation in a typical city cell.

Test 2: Proposed Segment Intersection Test
An optimisation has been developed to only execute the segment 
intersection test when an intersection is probable. For each road 
segment the node data stored in Test 1 can be accessed efficiently 
using the road graph data structure. From this data we can deduce 
if an intersection is probable: if both nodes are on the same side of 
the  proposed  segment  or  if  both  node  perpendiculars  are 
positioned  on  the  same  extension  of  segment  ab then  an 
intersection is not possible.  In addition if a snap event occurred 
previously the maximum value for  r is reduced to the lowest  r 
value for the previous event thus excluding even more segments 
from testing. See  Figure 11.  The application of this optimisation 
results in a 98% reduction of all segments intersection tests in a 
typical city cell.

Test 3: Proposed Node Distance to Segments
If  a snap event occurred in the previous tests then the third test 
will not be executed as it cannot return a snap event closer to the 
root than the previous tests. However if no snap event is detected 
this final test will be executed. Its operation is similar to Test 1 
but in this case node b of the proposed segment is tested against 
all other segments in the local road graph.  The  check calculates 
the distance between node  b and every other line segment  cd. If 
the distance is within a set snap size a road snap event will be 
triggered. Upon  further  inspection  if  the  snap  point  on  the 
neighbouring segment  is within  a set  snap size of  the defining 
nodes a  node snap event will be raised.

After the snap algorithm has completed it analysis of the proposed 
segment  in  relation  to  the  existing  road  network  a  result 
containing the snap event, location and a reference to the node or 
road involved.  The  road generation  algorithm decides  on  what 
course of action to take based on this result.

Figure 9: Snap area
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 4 Building Construction
The  building  construction  stage  of  Citygen  is  accomplished  in 
three stages. Firstly the enclosed regions are extracted from the 
secondary  road  graph  by  applying  the  Minimum  Cycle  Basis 
algorithm as described previously in Section 2. Secondly the lots 
are  identified  by  splitting  the  regions  into  minimal  tracts  or 
parcels of land suitable for development. Thirdly and finally the 
buildings  are  selected  based  on  their  control  parameters  and 
constructed in the boundaries of the lots and textured accordingly.

 4.1 Blocks
Blocks  represent  the  enclosed  regions  of  the  secondary  road 
network. The role of the block is to add any extra geometry such 
as footpaths, signposts, traffic lights or post boxes onto the region 
before  lot  subdivision  occurs.  Currently  only  footpaths  are 
implemented by applying a simple inset to the boundary polygon.

 4.2 Lot Subdivision
The lot division process operates on the region boundary deifned 
in the city block. A subdivision algorithm is applied based on that 
described by Mueller et al. in [15] but without the requirement for 
regions to be convex.  Both concave and convex boundaries are 
supported in our implementation and as a result it is possible to 
extract  valid lots from complex  regions and even facilitate the 
presence of filament roads. This enables us to apply the technique 
to suburban areas and support filament roads.

Figure 12: Lot Division Algorithm 

The  algorithm works  by  subdividing  each  region  and  operates 
recursively until a target lot size is reached. Each split operation is 
executed  using  the  perpendicular  of  the  longest  side.  Steps 
required to complete a single region split are as follows:

1. Identify the longest side beyond the target lot size and 
calculate the perpendicular from a deviated midpoint to 
split the polygon. The deviation introduces reproducible 
noise for more natural looking lots. 

2. Calculate the intersection points between the line and 
the boundary and store them in the order encountered 
with each polygon index included. {a:2, b:7, c:9, d:14}

3. Process  the  intersection  segments  excluding  those 
outside the polygon  and construct  a  data  structure  to 
provide a graph for the polygon. {c→b, a→d}.

4. Merge  the  intersection  graph  with  the  polygon  and 
extract the cycles from the graph.

The lot division algorithm works fine for Manhattan like regions 
where  the  input  data  is  generally  regular  and  block  shaped. 
However when the algorithm was initially tested on suburban road 
networks the resulting lots were angular and irregular. To combat 

this  and  provide  realistic  lots  for  suburban  networks  a 
modification  was  made  to  the  lot  division  process  in  which 
division was first prioritised along sides with road access. As a 
result of this change almost all lots were oriented perpendicular to 
their access road reflecting the conditions found in the real world. 
In a similar fashion the value of lots for development is calculated 
taking  appurtenances  into  account  as  used  in  the  real-estate 
industry. Lots without road access are not considered suitable for 
building  development  and  are  discarded  or  destined  for  green 
space.

Figure 13: Down-town and Suburban lots in Debug View

 4.3 Building Generation
Buildings are generated on the lots created by the lot subdivision 
process. Hints are attached to each neighbourhood as part of the 
control  parameter  set and  advise  the  building  generation 
algorithm on what class of building to be generated and how it 
should be positioned on the lot. Down-town buildings attempt to 
make maximum use of lot space while suburban buildings retreat 
in from their road access side and also from each other to make 
room for a garden area. Industrial  building retreat in from their 
boundaries to emulate the green space found in industrial estates.

Building construction begins with the positioning of the building 
footprint on the lot by in-setting the polygon boundary of the lot. 
After the footprint has been calculated is is then extruded upwards 
to produce a solid object. The geometry of the buildings is very 
basic  but  with  the  aid  of  normal  maps  we  can  simulate  extra 
geometry on the building. Figure 14 shows a typical texture tile 
and associated normal map for a building.

Figure 14: Building Texture, Normal Map and the resulting building 
after the material has been applied.
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 5 Results
In this section we show Citygen in action and introduce the user 
interface. We also present several  screenshot images displaying 
generated cities that  were  created in Citygen  being rendered in 
real-time within the application.

Interface
Citygen  is  an  interactive  application  that  provides  a  complete 
integrated  workspace  for  city  generation.  The  application  is 
designed to be accessible and easy to use, expert knowledge is not 
required and it is suitable for artists and non-technical staff. Cities 
are edited and view using a point and click interface similar to a 
3D editor and the application interface is structured simply with 
three main editing modes: node, road and cell. Each mode has an 
associated set of tools and property inspector to view and modify 
parameter  values.  There is  no need for  a preview mode as  the 
application provides a live real-time 3D view of the world using 
the  built-in  game  engine[1] which  is  used  throughout  the 
generation process.

Output
Figure 16 displays a screenshot of a generated test city. The city 
model  shown contains  over  24,000 buildings  and the complete 
generation time for the city including adaptive roads, secondary 
roads  and  buildings  is  only  3.5  seconds.  The  buildings  are 
currently textured using only a small number of materials. Further 
building textures  have not  been added due to  time  constraints, 
however the application does provide a facility for the user to add 
their own materials.

Even with this amount of geometry the city is navigable at frame 
rates and can be still be edited interactively.
Note: Metrics were taken from Citygen running on a laptop with the following specifications: Intel Core Duo @ 

2.33Ghz, ATI X1600, 1GB RAM.



 6 Future Research
At  present  we  have  developed  an  system  that  implements  the 
generation of primary roads, secondary roads and buildings in an 
interactive  accessible  manner.  Although  we  are  pleased  with 
performance  and  output  of  the  system  a  number  of  areas  for 
improvement and future research can be suggested.

The system provides  a set  generation parameters  and deviation 
values from which a normal random distribution is generated. If 
specialised distributions were to be used by acquiring statistical 
data from existing city patterns then the  generation system would 
be able to create more realistic cityscapes  with  little additional 
computation  required.  An  example  of  this  is  building  height, 
currently  the  system  generates  an  even  distribution  of  heights 
when  a  more realistic solution could be mostly short  buildings 
with  a  few  skyscrapers.  Research  is  required  to  acquire  the 
statistical  data  and  validate  this  theory  but  the  changes  to  the 
current generation system would be trivial.

Citygen  is  designed  to  enable  parallel  computation  whenever 
possible  and  uses  multiple  threads  to  exploit  multi-core 
processors.  A  logical  step  forward  to  accelerate  performance 
could be to offload this parallel computation on to the GPU where 
numerous  execution  units  could help generate  a  more  rich and 
detailed city model in real-time.

An obvious improvement to increase the realism of the output is 
to  introduce  a  larger  and  more  varied  texture  set  or  even 
implement a procedural solution. Citygen was developed with a 
very limited  texture  set  as  it  was  not  the  focus  of  the  project, 
however  there  are  no  technical  reasons  not  to  include  more 
textures  only  time  constraints  in  creating  them.  Also 
offset/parallax  mapping  had  been  implemented  as  a  superior 
method to add depth to buildings but lighting problems occurred 
preventing its inclusion in the application.

To finish there are several  extensions to the real-time rendering 
aspect of the system that could be expanded. The graph structures 
provide  adjacency  information  for  cell,  road  and  blocks.  This 
information  could be exploited to  enable  features  like  city cell  
paging, a method of geometry paging for cities. These techniques 
are of interest to us and it is an area destined for future research.
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