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Abstract
The rapidly growing computer game industry requires a highly skilled workforce and this 

combined with the complexity of modern games, means that production costs are extremely 

high. One of the most time-consuming aspects is the creation of game geometry, the virtual 

world which the players inhabit.  We have developed techniques to automatically generate 

such geometry, thus removing the need for developers to construct it manually.

In this thesis a city generation system is presented that employs  procedural techniques to 

rapidly create the urban geometry typical of a modern city. The approach taken is unique in 

that users are provided with an interactive interface to control the generation process. The 

system enables the generation of the underlying road networks which form the structure of 

cities  and  urban neighbourhoods.  These  road  networks  are  automatically  mapped  to  any 

terrain model, and adapt themselves to the specific geometry of the underlying terrain. The 

regions  enclosed  by roads  are  automatically  extracted  from the  resulting  road  graph and 

building lots are determined using a subdivision process. The buildings are placed within the 

boundary of selected lots and basic geometric shapes are generated with advanced materials 

containing shaders to simulate additional geometry. Tactile control is provided by allowing 

the user to directly manipulate high level elements such as road intersection nodes and to 

control the many other aspects of city generation via intuitive property inspectors. As users 

alter  the model the results are updated in real  time, thus facilitating an interactive design 

process. The system can be used to pre-generate geometry in advance or to enable dynamic 

game environments where world geometry can be generated on demand.
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Chapter 1 Introduction

Chapter 1
Introduction

The  focus  of  our  research  is  on  the  generation  of  city  models  via  the  application  of 

procedural  techniques.  By  using  a  sequence  of  computer  instructions  we  aspire  to 

automatically generate all of the geometry,  materials and textures that constitute a 3D city 

model. The motivation of our research is to achieve the efficient construction of realistic, 

detailed and large scale urban environments and help solve the content creation problems 

facing the graphics industry. In addition we aim to enable new features like dynamic game 

environments, compact distribution models and accelerated rendering for large city scenes.

1.1 Background

Advances in the field of computer graphics are consistent and we are now in an era where 

real-time  photo-realistic  rendering  is  common  place  and  graphics  processors  exceed  the 

complexity of CPUs in terms of transistor count by a ratio of up to 4:1 [Nvidia 2007][AMD

2007].  The evolution of computer graphics has dramatically increased the computing power 

available to developers and it has enabled the display of more realistic, detailed and large 

scale 3D worlds than ever before. However, displaying these worlds on screen is only part of 

the challenge. To provide this level of graphic detail in a final product, the detailed content—

including the geometry, materials and textures that make up the 3D worlds—must be created 

by a  fleet  of  artists.  Content  is  traditionally  defined  as  static  assets  and  requires  manual 

construction. The authoring of such detailed and large scale content is both time consuming 

and expensive. Even with the latest advancements in graphics hardware, the industry finds 

itself in a position where the new level of visual fidelity can only be achieved with massive 

financial resources to fund a new level of content creation. 
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Chapter 1 Introduction

The prohibitive cost of content creation results in the graphics industry,  including games, 

films, advertising and television, struggling to meet the consumers' expectations, as set by the 

largest and most expensive titles. For those studios who can afford to, increasing the number 

of artists working on a project is a simple method that can be used to create more content. 

However,  the  effectiveness  of  this  method  is  limited  by the  artistic  pipeline  not  scaling, 

additional artist numbers do not necessarily generate a proportional yield of content. These 

inefficiencies add to the already high development costs of computer graphics. The result is 

an  increased  barrier  of  entry  for  new development  firms,  thus  stifling  innovation  in  the 

industry.

One  potential  solution  to  the  content  creation  problem  is  the  application  of  procedural 

techniques [IDV Inc. 2006][Wright 2005]. Traditional approaches to content creation rely on 

the use of static assets to define the world. These static assets are largely inflexible, not easily 

modified  and  their  reuse  is  limited.  Procedural  techniques  define  assets  using  a  set  of 

computer instructions. The geometry, textures or behaviours of the asset are then generated 

automatically using these instructions. Furthermore by parametrizing the generation functions 

a wide range of output can be created. This property enables procedural assets to be far more 

flexible than static assets, offering much greater re-usability and range of output. 

Additional benefits can be provided by the application of procedural techniques, with some 

particularly novel applications in gaming. By encoding the behaviour of the entities in a game 

world, it is possible to create several different instances of each entity, enabling the creation a 

unique environment with each play of the game. Using these dynamic game environments 

new game-play  aspects  can  be  introduced,  the  longevity  of  a  title  can  be  improved  and 

entirely new gaming concepts can be applied [Wright 2005]. Procedural techniques can also 

provide  practical  benefits  to  the  distribution  of  games.  The  concise  nature  of  procedural 

assets stand in direct contrast to traditional static assets where several CDs, DVDs, and even 

Blu-ray discs are required to distribute a single application. Procedural techniques employ 

algorithms  to  generate  content  on-the-fly,  which  allows  applications  to  make  significant 

space  savings.  This  is  most  evident  in  the  Demo  Scene where  graphically  detailed 

applications are distributed in a number of Kilobytes not Gigabytes  [Scene Awards 2004]

[Farbrausch  2007].  In  practice  a  hybrid  approach  is  used,  where  some  static  assets  are 

necessary but procedural techniques are applied for selected assets to enable enhanced detail 

and more efficient distribution.
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1.2 Procedural Generation

Procedural  generation  can  be  defined  as  the  application  of  computer  instructions  to 

automatically generate geometry and textures. The construction of complex geometric objects 

is a new phenomenon in computer graphics, even though procedural techniques have been 

used  for  over  20  years  to  one  degree  or  another.  Recently  these  techniques  have  been 

extended to successfully model complex natural objects such as trees, waterfalls and clouds 

[IDV Inc. 2006][Ebert et al. 2003].

Early procedural algorithms were primarily concerned with the construction of textures. This 

can be seen in Perlin Noise, which was devised to add a natural appearance to textures by 

creating a coherent form of noise by layering noise textures to add a more natural appearance 

[Perlin  1985].  This  technique  has  also  been  applied  to  generate  solid  textures  of  natural 

materials such as marble [Perlin 1999]. Other techniques emulate natural cellular materials by 

using Voronoi Diagrams to create textures of skin, bark and cobblestone [Ebert et al. 2003]. 

The construction of complex geometry in games has only recently been carried out using 

procedural techniques. One area to which these techniques have been applied successfully is 

to the generation of trees and plants. In 1990 A. Lindenmayer and P. Prusinkiewicz released a 

book titled  Algorithmic Beauty of Plants that introduced a system of graphically modelling 

plants using a rewriting system [Prusinkiewicz and Lindenmayer 1990]. This book illustrated 

how complex plants could be generated from a concise definition and documented a formal 

grammar  to  describe  the  structure  of  these  plants.  Although  no  immediate  effects  were 

noticeable in game development it did provide inspiration for further research. A commercial 

real-time tree generation system titled SpeedTree RT by IDV was first licensed in 2002 and 

provides a solution for generating trees in games and other computer graphics applications. 

SpeedTree RT has been used by numerous game studios including Rockstar, Microsoft, Epic 

and Sony  [IDV Inc. 2006]. The system has also received several middle-ware awards and 

garnered noticeable attention for its application of procedural generation [Gamasutra 2002].

Entire worlds can be constructed from procedural techniques, where assets including realistic 

natural  features  such  as  terrain,  lakes,  trees  and  shrubs  are  procedurally  generated 

[Pandromeda 2006]. The widespread application of  procedural techniques has been largely 

confined to technical demonstrations and show-cases.
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Figure 1: SpeedTree RT [IDV Inc. 2006]

In the computer graphics industry, and in particular the games industry, procedural generation 

is  seen as a complementary technology that  can be used to supplement  traditional  artist-

authored content. The application of procedural assets has been limited to the construction of 

natural  phenomena  such  as  trees,  shrubs  and  terrain,  but  has  equal  relevancy  for  the 

construction of man-made phenomena. With games such as Spore continuing to expand the 

boundaries of procedural generation,  these techniques and their  range of applications will 

continue to grow beyond simple flora [Wright 2005]. 

1.3 City Generation

Cityscapes are difficult to model. They are both visually and functionally complex and are a 

result of an elaborate evolutionary process that takes place over hundreds of years under the 

influence of countless factors. Some of the major influential factors affecting cities include 

population, transport, environment, elevation, vegetation, geology and cultural influences. It 

is a formidable challenge to create a realistic model of such a large and complex system. 

To  design  a  procedural  generation  system  that  can  construct  realistic  cityscapes,  it  is 

important to identify and carefully select  a reduced set of factors to model.  A number of 

urban design and architecture authors have discussed many aspects of cityscapes including 

the patterns present and the constituent components. Kevin Lynch writes about the image of 

the  city  and human perception.  He itemises  constituent  elements  of  cities  such  as  paths, 
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edges, landmarks, nodes and regions [Lynch 1960]. Alexander et al. documents a number of 

patterns  found  within  cities  such  as  neighbourhoods,  public  areas  and  special  buildings 

[Alexander et. al. 1977]. Using this research suitable candidates are identified and only the 

most predominant patterns and features of cities are selected for modelling. 

Specifically  our  research  focuses  on  the  patterns  of  road  networks,  the  divisions  of 

neighbourhoods and building construction.  The primary,  or main roads act as traffic flow 

arteries, whose function it is to transport people and goods around the city from one district to 

another. In addition, the primary roads often convey essential characteristics of the city and 

form tangible boundaries that divide the city into regions or neighbourhoods. Within each of 

these neighbourhoods we find the secondary roads that service the local area by providing 

access to and from the primary road network. Buildings are only situated or placed within 

access of the primary or secondary road network.

1.4 Aims and Objectives

Our general aim is to develop a city generation system that produces the required geometry, 

materials and textures to model a cityscape. In particular the system should be capable of:

● producing  a  city  model  that  is  realistic,  detailed,  large  scale  and  fits  into  the 

surrounding environment.

● generating road networks that reproduce or emulate a number of distinct styles found 

in real city road networks.

● constructing primitive buildings that are suitable for use in real-time rendering but 

detailed enough to maintain the realism of the city.

If successful, the system should do the above in such a way that:

● interactive and tactile control of city generation is possible.

● it is easy to use and accessible to novice users.

● output can be easily used by those working in the graphics industry.

In addition to this, some practical objectives are to:

● implement a portable multi-platform workspace for city generation.

● implement the system such that it can be easily developed and extended.
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1.5 Achievements

In  this  thesis  we  document  our  research  in  the  area  of  procedural  city  generation.  The 

concepts and ideas proposed to solve the city generation problem are outlined, the generation 

system is described and the results are evaluated. Notable achievements of the work can be 

summarised as follows:

● Study of procedural techniques: their background, principles and the key properties 

which distinguish successful algorithms. Analysis of related city generation research, 

including an outline of the algorithms, and an evaluation of the output generated.

● Design of an adaptive road system that automatically plots the path each road takes by 

sampling terrain and fitting the road to the environment according to a pre-specified 

strategy.

● Design of  a  real-time  road growth  algorithm and an efficient  system to  calculate 

intersection and proximity status for each road segment added.

● Implementation of an interactive city generation system. A cross-platform graphical 

application provides an integrated workspace to view, edit and interactively control 

the complete city generation process.

● Testing  and  evaluation  of  the  city  generation  system  where  the  operation, 

performance and output of the system is evaluated.

1.6 Thesis Outline

In this introduction some background information has been provided, procedural techniques 

have been introduced, the motivation for research has been outlined and the goals and major 

achievements  have  been  listed.  On this  basis  an  understanding  of  the  research  has  been 

established and the rest of this thesis will cover in more detail the related literature, theory, 

design, implementation and results.

In  the  next  chapter,  Chapter  2,  we  provide  an  overview  of  the  subject  of  procedural 

techniques and present a number of key techniques and algorithms that have been applied 

successfully  in  the  field  of  computer  graphics.  In  Chapter  3  previous  research  into  the 

procedural  generation  of  cities  is  reviewed  and  an  analysis  of  the  existing  solutions  is 

provided.  Chapter  4  outlines  the  design  for  our  interactive  city  generation  system called 
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Citygen,  and  explains  the  operation  of  the  main  components.  Chapter  5  documents  the 

implementation of Citygen including the tools, libraries and algorithms used. In Chapter 6 the 

results of the city generation system are presented and areas for possible future research are 

considered.  Finally some conclusions are provided.
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Chapter 2
Procedural Techniques Research

In  this  chapter  an overview is  provided  into the field  of  procedural  techniques  and their 

application in the computer graphics world. A description of general procedural techniques is 

included and several key properties of effective algorithms are identified. In order to gain an 

insight into the application of procedural techniques an outline into the operation and results 

of several of the most influential techniques is provided. This study includes techniques such 

as Fractals, Perlin Noise, L-Systems and Cellular Basis algorithms.

2.1 Key Properties

A  procedural  technique  describes  an  entity,  geometry,  texture  or  effect,  in  terms  of  a 

sequence of generation instructions rather than as a static block of data. These instructions 

can then be executed to create instances of the asset and parameters can be used to vary 

characteristics.  Procedural  techniques  can  thus  be  employed  to  produce  a  wide  range  of 

assets, from generating simple noise for use in texturing and natural formations [Perlin 1985], 

to more complex recursive algorithms such as fractals or L-systems that can recreate organic 

structures such as snow flakes and trees [Prusinkiewicz and Lindenmayer 1990].

Key properties of successful procedural techniques include [Ebert et al. 2003]:

• Abstraction: Data is not specified in the conventional sense as geometry, textures, etc. 

but instead the data and behaviour of the entity is abstracted into an algorithm or a set of 

procedures.  Minimal  knowledge  is  required  by  the  operator  and  model  data  can  be 

manipulated easily without requiring details of the implementation.
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• Parametric  Control: Parameters  directly  correspond  to  a  specific  behaviour  in  the 

procedural generation. The developer can define as many useful controls as required for 

the  artists  to  operate  effectively.  Example  of  parameters  include  the  height  of  the 

mountains in a terrain algorithm or the number of segments in a procedural sphere.

• Flexibility:  It is possible to capture the essence of an entity without explicitly bounding 

it within real-world limits. Parameters can then be varied to produce different results as 

desired and even results outside the normal range of the original model can be generated.

Procedural techniques have been applied successfully in the generation of numerous complex 

phenomena in computer graphics and have proved beneficial for a number of reasons.

Textures,  geometry or effects  abstracted into procedural  algorithms are not fixed at  a set 

resolution  or  number  of  polygons.  Procedural  techniques  are  therefore  inherently  multi-

resolution in nature and the complexity of their output can be varied. This capability is of 

particular interest to computer graphics practitioners. For example  level of detail  (LOD) is 

important  in  any  3D  rendering  system  and  essential  to  real-time  rendering  applications 

[Akenine-Möller and Haines 2002]. The concept behind LOD is to use more simple versions 

of an entity if it contributes less to the final rendered image. So for an object that occupies 

only 4 pixels in the final image, 10,000 polygons are not required and a basic representation 

using 10 polygons would be sufficient. The multi-resolution nature of procedural techniques 

allows models to be automatically generated at several levels of detail [Ebert et al. 2003].

Concise descriptions for generated objects are possible and can often be expressed in terms of 

a few simple parameters. These small descriptions can be used to create large amounts of 

detailed textures and geometry. This effect is known as data amplification [Ebert et al. 2003] 

and provides developers with the means to create an entire world that is easily distributable 

over  low-bandwidth  network  connections.  The  conciseness  of  procedural  techniques  are 

exploited by Demo Scene creators who create and distribute scenes that are complex and rich 

in detail in the form of tiny executable files as small as 2KB [Scene Awards 2004].

The flexibility and control provided by procedural techniques give the designer a platform for 

artistic freedom and experimentation. New visual effects and original objects can be created 

by experimenting with parameter values that exceed normal boundaries  [SideEffects 2005]. 

Typically  procedural  algorithms  are  implemented  in  advance  on  software,  however  with 

recent advances in graphics hardware it is possible to execute techniques in real-time on the 

9



Chapter 2 Procedural Techniques Research

GPU.  For  example,  complex  procedural  techniques  like  volumetric  textures  that  were 

previously impossible to run in real-time can now be implemented in this manner [Hart 2002]

[Spitzer et al. 2003].

A number of fundamental procedural techniques and algorithms are now described that have 

been successfully employed within the domain of computer graphics.

2.2 Fractals

Natural shapes are not easily described by conventional geometric methods. Clouds are not 

spheres and mountains are not cones. Natural shapes tend to be irregular and fragmented and 

exhibit a complexity incomparable to regular geometry  [Mandelbrot 1982]. However these 

shapes can be described using a branch of mathematics called fractal mathematics. Benoît 

Mandelbrot, regarded as the 'father of fractals', coined the term fractal in 1975 from the Latin 

fractus meaning broken. The basic concept of fractals is that they contain a large degree of 

self similarity. This means that they usually contain little copies of themselves buried deep 

within the original, like the stars embedded in the Koch Snowflake  [Ebert et al. 2003], as 

shown in Figure 2. Also, fractals possess infinite detail, so for any given fractal, the closer we 

look at it, the more detail it can reveal [Linden and Schachinger 2002].

Figure 2: The first four iterations of the Koch snowflake

The  Koch  snowflake  in  Figure  2 shows  four  recursions.  Self-similarity  is  achieved  by 

generating  the  same  shapes  or  patterns  at  smaller  and  smaller  scales  as  the  recursion 

progresses, a property referred to as  scale invariance.  There is no theoretical  limit  to the 

amount of recursion that can be done and hence infinite levels of detail can exist within the 

shape.  Visualizing  fractals  manually  is  difficult,  and  therefore  computer  based 

implementations  of  fractal  algorithms  have been  present  from the start.  Mandelbrot  used 

computers  to  visualise  complex  fractals  including the Mandelbrot  Set  shown in  Figure 3 

[Mandelbrot 1982]. In addition, a wide range of natural structures from simple plants like 
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ferns as shown in Figure 4, to detailed terrain, contain fractal properties and can be generated 

using simple recursive algorithms [Barnsley 1988]. Fractal algorithms are particularly suited 

to procedural generation because of the effective abstraction they provide from the structural 

complexity of the natural objects they represent. Also, fractal algorithms yield a high level of 

data amplification. Complex models can be generated from a few simple equations. Finally 

fractal algorithms can utilize recursion to  provide varying levels of detail.

Figure 3: Mandelbrot Set Figure 4: IFS Fractal Ferns [Barnsley 1988]

Fractals are limited however to self similar structures and the objects we are seeking to model 

may not necessarily contain this self-similarity.  They are superseded in many contexts by 

other more flexible algorithms like formal grammars such as L-systems.

2.3 L-Systems

L-systems are a formal grammar devised by biologist  A. Lindenmayer  as a mathematical 

theory for biological  development.  L-systems were originally developed to study bacteria 

replication and the growth patterns of simple organisms [Lindenmayer 1968]. Since then the 

system has  been  extended  to  define  more  complex  objects  such as  plants  and branching 

structures. In the book, Algorithmic Beauty of Plants, the developmental process of plants is 

captured  using  the  formalism  of  L-systems  and  visualised  with  computer  graphics 

[Prusinkiewicz and Lindenmayer 1990].

The  central  concept  of  L-systems  is  that  of  rewriting,  a  technique  for  defining  complex 

objects by successively replacing parts of a simple initial object using rewriting rules. An 

example of a simple L-system is shown in Figure 5. An initial state or axiom, ω, is a string of 

symbols and constants that define the initial state of the system. A series of rewriting rules or 
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productions, P, are then defined. Each of these consist of two strings: the predecessor and the 

successor,  that  specify  the  way  variables  can  be  replaced.  These  rules  are  applied 

successively, allowing large complex objects to be quickly generated from a simple axiom.

V : {a, b} n=0 : a

ω : a n=1 : ab

P1 : a → ab n=2 : aba

P2 : b → a n=3 : abaab

Figure 5: Algae Growth: three iterations

L-systems  can  be  used  to  visualise  structures  by  embedding  graphical  symbols  in  the 

vocabulary of the axiom or productions. Turtle commands are used to describe and visualize 

a  range  of  L-systems  including  plants  and  branching  structures.  The  idea  behind  turtle  

graphics is that the 'turtle' can be given instructions relative to its current position and as it 

moves  it  leaves  a  pen  line  mark  behind  it.  The  bracket  extension  was  proposed  by 

Lindenmayer to support the branching structures that are common in nature  [Lindenmayer

1968].  Figure 6 displays an example of such a structure defined as an L-system using the 

bracket extension.

n=5,  δ=22.5◦

ω = X

P1 : X→F-[[X]+X]+F[+FX]-X

P2 : F→FF

Figure 6: L-system branch generated in turtle graphics[Prusinkiewicz and Lindenmayer 1990]
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Figure 7: Procedurally generated tree used in a modern 3D game [IDV Inc. 2006].

Research  into  L-systems  has  continued,  and  significant  advances  have  been  made  with 

commercial  packages  now  available  that  can  apply  similar  techniques  to  generate  rich 

landscapes  with  detailed  foliage  including  shrubs,  plants  and  trees.  Figure  7 shows  a 

demonstration of the SpeedTree plug-in from IDV Inc. which enables graphics developers to 

easily populate scenes with a realistic and diverse range of plants and trees [IDV Inc. 2006]. 

L-systems work well as a procedural technique for a number of reasons. They allow complex 

models and organic structures to be defined, modelled and visualised using a concise set of 

productions.  A varying  level  of  complexity  can  be  supported  by parameters  such as  the 

recursion  level  of  the  L-system  [Lluch et  al.  2003].  The  algorithms  can  be defined  in  a 

compact and intuitive manner and can effectively abstract the recursive structure of many 

natural phenomena. L-system generation can be adjusted easily via external parameters and is 

extensible by design, in a similar way to other formal grammars.

2.4 Perlin Noise

Perlin Noise is an algorithm that can be used to create more natural looking textures. The 

technique was originally developed by Ken Perlin and was first applied in the feature film 

Tron released in 1982 [Perlin 1985]. The technique has a range of applications in computer 

graphics including the creation of effects like fire and clouds and the generation of fractal 

geometry like terrain. 
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The concept behind Perlin Noise is to combine a number of noise layers together to produce a 

single texture of coherent noise with fractal like detail.  A  Coherent noise function can be 

defined as one in which the values change smoothly from one point to the other.

Two major  components  are  used to  accomplish  this:  a  noise  generation function  and an 

interpolation function.

Noise generation is achieved by employing a simple random function to construct an initial 

noise data set.  It is important that the data output is controlled and reproducible. For this 

reason a seeded random generator is used which can produce consistent results for a given 

input seed and maintain a random output pattern.

0
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Figure 8: Interpolation Linear and Cubic

Interpolation is a process of curve fitting in which a function is constructed that can match a 

given data set. Using this function, new data points can be calculated from a initial set of 

values,  in  this  case  the  data  generated  by  the  noise  function.  No  specific  interpolation 

algorithm  is  required  for  Perlin  Noise  and  each  algorithm  can  vary  in  computational 

complexity,  smoothness  of  function  curve,  accuracy  and number  of  data  points  required. 

Linear interpolation is a basic method, fast and of low quality. Cubic interpolation in contrast 

is more complex, significantly slower, outputs a high quality curve and requires four points to 

obtain a single value. 

The interpolation  process allows any random noise data  to be expressed as a continuous 

function. From these functions a number of noise texture layers can be created using any 

specified frequencies and amplitudes.
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 +  +  + =
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Figure 9: Combination of several layers of noise.

Turbulence is finally applied by combining several noise texture layers of differing scales 

together. This creates a form of coherent noise. Each layer is referred to as an Octave and the 

ratio between amplitude and frequency of the layers can be expressed as a constant known as 

persistence. The resulting output is a natural looking procedural texture that can be defined in 

terms of a few simple parameters.

Figure 10: Photo realistic scenery and rendered using Terragen with procedural geometry 
generation and procedural texturing. ©2003 M. GIULI.

In nature, there are several scales of detail present. For example, in terrain, large features like 

mountains are most predominant, but also smaller features like hills and crests, and even fine 

detail such as scree are also present. These layers of detail make procedural techniques like 

Perlin  Noise especially  suited to  generating  natural  phenomena.  Terragen uses  the Perlin 

algorithm to generate photo realistic terrain, clouds and seas  [Planetside 2004].  Figure 10 

showcases the detail and scale of output that is possible using procedural techniques. The 

persistence parameter can be used to control aspects of terrain generation. A low ratio of 

persistence can produce smooth terrain with very fine detail, and high persistence may result 

in more jagged terrain with less fine detail. For real-time rendering applications, the Perlin 

Noise algorithm can generate any specific region of the terrain on demand and vary the level 

of detail present without needing to store the  massive data-set of the terrain geometry.
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Solid textures,  also known as three dimensional  or volumetric  textures,  can be generated 

using Perlin Noise. Solid textures differ from conventional two dimensional textures in that 

they allow objects to be virtually carved from the texture as they would be carved out of a 

solid block of material  [Perlin 1999]. An example is shown in  Figure 11 of a vase that is 

carved  out  of  a  volumetric  marble  texture 

created  using  the  Perlin  noise  algorithm.  The 

texture  replicates  the  veins  of  darker  material 

running  through  the  marble  and  achieves  a 

higher  level  of realism than is   possible  using 

basic 2D texturing techniques. Solid textures are 

computationally  expensive to  render  with high 

memory and storage requirements. Compression 

such as S3TC can partly alleviate this problem 

but  still  results  in  high  requirements.  Perlin 

Noise can  be used to  solve this  problem as  it 

requires  minimal  storage due to  its  procedural 

nature,  and  can  even  be  used  to  render 

volumetric textures in real-time using the pixel-

shader  hardware  on  the  GPU,  effectively 

removing any memory constraints [Hart 2002].

Perlin Noise provides a comprehensive set of benefits. Effective parametrization gives the 

developer control of the output using high level parameters. Geometry and textures created 

using the algorithm have minimal storage requirements and can be generated from a concise 

definition  consisting of  a  few simple  parameters.  Textures  of any size and detail  can be 

produced and the innate behaviour of the algorithm can exploited to support varying levels of 

detail. The output generated is tile-able and can join seamlessly, thus enabling techniques like 

repeating  and  layering  for  multi-texturing.  Additionally,  the  technique  can  be  used  as  a 

method of enabling real-time volumetric textures on modern graphics hardware. Perlin Noise 

is one of the most useful and frequently used procedural techniques and is beneficial in a 

wide range of  computer graphics applications.
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2.5 Tiling

Tiling  is  one  of  the  most  basic  procedural  techniques  and  has  a  long  tradition  in  game 

development.  Many of the classic platform titles such as  Mario employed tiling to repeat 

sections  of  2D  graphics  creating  a  virtual  world.  Games  such  as  the  Shoot  Em  Up 

Construction Kit, released in 1987 by  Sensible Software,  allowed the user to construct and 

edit game maps by providing a simple interface to select and position tiles from a tile library 

[Sensible  1987].  Figure  12,  shown  below,  demonstrates  an  example  tileset and  a 

corresponding screenshot for the Super Mario Bros game by Nintendo.

Figure 12: Super Mario Bros. 2 (Lost Levels),  © Nintendo Japan Ltd. 

More  recently  multi-texturing techniques  have  evolved  and  use  repeatable  tiles  layered 

together  to  create  highly  detailed  and  varied  textures.  New materials  can  be  created  by 

combining a set of detailed textures, colour maps and blending maps. Using this technique 

terrain can be procedurally textured by applying several layers of detailed tile-able textures. 

Examples of texture layers could include rock, grass, sand and snow. Also texture layers can 

be combined with varying degrees of influence on the final texture. Textures are applied to 

the terrain according to a variety of specified parameters, they can be selected according to 

height,  slope, or specified explicitly using an image map  [Planetside 2004]. This solution 

allows vast areas to be textured in detail, something that is not possible using a single high 

resolution texture.
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Figure 13: From left to right: a) Regular and transition patterns and the probability map.  
b) Virtual texture. c) Virtual texture mapped on terrain. [Lefebvre and Neyret 2003]

Extended  algorithms  have  also  been  developed  that  use  stochastic  information  such  as 

probability distribution maps to procedurally texture landscape [Lefebvre and Neyret 2003]. 

An image map for the terrain area is supplied that stores the probability of using various tiles. 

Constraints can be specified to state which tiles can be joined under what conditions and 

whether they may be joined directly or require transitional tiles. Using a random function 

thousands of different permutations of worlds are possible from a single probability map.

Procedural  tiling  systems  provide  several  advantages  for  graphics  applications.  Vast  and 

detailed landscape or terrain for virtual worlds can be created from stochastic information and 

small sets of texture tiles. These maps and game worlds can then be easily distributed for on-

line  gaming  which  is  particularly  useful  for  massively  multi-player  on-line  role-playing 

games (MMORG) and other on-line applications where game resources are shared. Storage 

and memory requirements are minimised so it is possible to optimally store and render worlds 

of vast dimensions in real-time on commodity hardware. Tiling is a good example of how a 

simple procedural technique can be applied and extended successfully in computer graphics.
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Chapter 3
City Generation Research

In the previous chapter we introduced procedural techniques and discussed the benefits they 

can bring to computer graphics. In this chapter we shall look at the structure of a modern city, 

and discuss the work of urban design and architecture authors who identify some key patterns 

and constituent components. Before reviewing the existing city generation research, a critical 

framework is established. Then an overview of each city generation system is presented, and 

an  insight  is  provided  into  the  operation  of  each  systems'  algorithms.  A  discussion 

accompanies  each  overview,  using  the  critical  framework  to  evaluate  the  strengths  and 

weaknesses of each approach.

3.1 The Structure of a City 

Cities are both visually and functionally complex. To obtain a better understanding of these 

complex systems and their structures, we look at the research which identifies the patterns 

and the  constituent elements. Urban design and architecture authors have discussed a large 

number of wide-ranging topics relating to cityscapes.  From the research studied we have 

selected work that relates closely to city structure and presents the most direct correlation to 

city generation. Two publications in particular fulfil these criteria: Kevin Lynch writes about 

the image of the city and human perception, he itemises the constituent elements of cities as 

paths, edges, districts, nodes, and landmarks  [Lynch 1960]. Alexander et al. document the 

patterns  found  within  cities  such  as  neighbourhoods,  public  areas  and  special  buildings 

[Alexander  et.  al.  1977].  The  following  sections  discusses  this  research  in  two sections: 

Primary Transit Network and Neighbourhoods / Districts. 
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3.1.1 Primary Transit Network

The primary transit network consists of the main roads or highways of a city, the major rail 

lines and waterways. This network is an important element in determining the sub-structure 

of a city and is instrumental in our interpretation of

From a visual perspective the primary transit network is perceived by both occupants and 

outside observers as the most predominant and recognisable pattern present in city structure. 

This theory can be reinforced by the research of Kevin Lynch. In The Image of the City  he 

documents a number of reasons for the importance of the primary transit network and its 

significance on our perception of the city. Firstly the concept of Paths is introduced: “Paths 

are the channels along which the observer customarily, occasionally, or potentially moves” 

[Lynch 1960]. In cities most transport is accomplished via road and the primary road network 

forms the main arteries and transport channels of the city. These Paths specify the location 

and route from which the city is observed and thus form a lasting impression on our image of 

the city. Lynch does not understate the importance of Paths on our perception of cities, he 

states that they are the “predominant elements” in our image of the city [1960]. Secondly the 

more abstract concept of Nodes is described. Nodes are termed as “points, the strategic spots 

in a city into which the observer can enter, and which are the intensive foci to and from 

which he is  travelling”  [1960].  Although they are  not  specific  to  the transit  network the 

relationship between Nodes and the network is explained: “They may be primarily junctions, 

places of a break in transportation, a crossing or convergence of paths”[1960]. So in relation 

to the primary transit network we can easily draw a parallel between the junctions as Nodes 

and roads or tracks as Paths. Both have a significant impact on our perception and thus play 

an important role in determining the recognisable character of a cityscape.

Functionally, the primary transit network is most significant to us as users of the city. The 

locations and structure of this network must be understood to navigate and move around the 

city. For this reason when arriving at a new city one of the first things many of us will do is 

purchase a map. Inside a city map the primary road network is emphasised to appear most 

evident and the rail network map will often occupy a separate page. Later we will frequently 

reference these networks on the map to find our bearings. Our comprehension of the transit 

network is essential to our understanding of a city and it is a key factor in our recognition of 

city characteristics.
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Milan – Concentric Rings Paris – Radial Spokes

Figure 14: Predominant Pattern in Existing Cities (Map)

Shown above in Figure 14 are two predominant patterns from two modern cities, Milan and 

Paris. The images illustrate how visible the patterns of the primary road network are and how 

they form an intrinsic part of city character.

3.1.2 Neighbourhoods / Districts

Neighbourhoods, or districts, are areas of the city which have an identifiable character and a 

tangible  boundary.  Each  city  is  composed  of  component  districts,  for  example:  the  city 

centre, the financial district, residential areas, industrial areas, suburbs and so on.

Urban research helps define these areas and explain the relationships with the city occupants. 

Lynch defines districts as “medium-to-large sections of the city, which the observer mentally 

enters  'inside  of'  and  which  are  recognizable  as  having  some  common,  identifying 

character”[Lynch 1960]. Alexander et al. discuss the importance of neighbourhoods and their 

relationship to the occupants of the city. In the pattern titled Identifiable Neighbourhood he 

describes these regions and the relationship with the occupants: “People need an identifiable 

spatial unit to belong to. They want to to be able to identify the part of the city where they 

live as distinct from all others”[Alexander et. al. 1977].

The  boundaries  of  each  neighbourhood  are  important  to maintaining  the  integrity  and 

character of the unit. Alexander et al. liken neighbourhoods to cells, and state the importance 

of boundaries. “The strength of the boundary is essential to a neighbourhood. If the boundary 

is too weak the neighbourhood will not be able to maintain its own identifiable character” 
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[1977].  The specific  components  of the cityscape  that  constitute  the boundaries for these 

regions are described in the patterns Subculture and Neighbourhood Boundary [1977].

Figure 15: Cells [Alexander et. al. 1977] Figure 16: Neighbourhood / District  
Boundaries [Alexander et. al. 1977]

These cityscape components include both natural boundaries – such as rivers and lakes and 

also man-made boundaries  – such as major roads and rail roads [1977]. Lynch terms the 

boundaries between districts as Edges, which he describes as linear breaks not considered as 

paths [1960]. These Edges may consist of elements such as shores, rivers, railroad-cuts and 

major roads. Although rail tracks and roads are also paths, they may be considered as Edges 

when they act as a barrier  to the access of a district.  For example consider a major road 

running  through  a  residential  area,  in  this  case  the  road  can  restrict  the  movement  of 

pedestrians in the local area and now acts more as an Edge than as a Path. Alexander et. al. 

reference the  “Appleyard-Lintell” study and define a metric stating that a road with more 

than 200 cars per hour deteriorates the quality of the neighbourhood and forms a barrier to fee 

pedestrian movement [1977].

Identifying components that constitute districts and their associated boundaries provide us 

with an insight into the structure of cities. It is clear from the urban research that the city-

wide primary transit network alongside natural features are key to determining the boundaries 

of more local structures such as districts or neighbourhoods. Based on this research we can 

conclude that the primary transit network is an important aspect of the cityscape and its affect 

on the sub-structure is wide ranging. Therefore, an obvious recommendation can be made, to 

create a successful city generation system an accessible method of control for this influential 

element should be provided.
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3.2 The Evaluation of City Generation Systems

City generation is achieved in a series of stages, with each applying one or more algorithms 

to generate a constituent component of a city. There is no predefined scope for any stage and 

each  system has  a  unique  approach  making  direct  comparisons  difficult.  The  generation 

process  can  however  be  divided  into  two  main  stages:  Road  Generation  and  Building 

Generation. For these stages an overview is presented for each city generation system and an 

insight is provided into the operation of the procedural techniques applied. 

3.2.1 Critical Framework

In order to evaluate the output created by the generation systems and the effectiveness of the 

the applied procedural techniques we identify a common set of criteria:

1. Realism  – Does the output of the city generation system look like a real city? How much 

detail is present and how true is the generated model to a real city model?

2. Scale  – Is the urban landscape generated up to the scale of a city?  How many roads, 

neighbourhoods and buildings are generated?

3. Variation – Can the city generation system recreate the variation of road networks and 

buildings found in real cities or is the output homogeneous?

4. Input  – What is the minimal input data required to generate basic output and what input 

data is required for the best output?

5. Efficiency – How long does it take to create the examples shown and on what hardware 

are they generated? How computational efficient is the algorithm?

6. Control – Can the user control the city generation process? To what degree can the user 

influence the generation results? Are the control methods applied intuitive or restricted?

7. Real-time – Are city geometry and textures generated in real-time? Are any rendering 

optimisations applied and can the city be rendered or explored in real-time?

The results of each approach are evaluated, using the criteria outlined above, to determine the 

effectiveness of the city generation systems and their associated procedural techniques.
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3.3 Grid Layout & Geometric Primitives

Stefan Greuter et al. describe a system to procedurally generate a city in real-time [Greuter et

al. 2003][Greuter et al. 2004]. The techniques applied to generate the city are discussed in a 

number of papers and demonstrated in a virtual city application titled Undiscovered City. The 

application creates  a  road  network  using  a  simple  grid  layout  upon  which  it  can  place 

buildings  generated  using  a  combination  of  simple  geometric  primitives.  The  research  is 

specifically targeted at real-time applications and the Undiscovered City application is a proof 

of concept for this idea. The system runs in real-time and renders at interactive frame rates.

3.3.1 Buildings: Geometric Primitives

The building generation system uses the location of buildings in the form of grid coordinates 

as a seed for building generation. The appearance of each building is determined by this seed 

including properties such as height, width and number of floors. Generating buildings using a 

similar set of numbers such as neighbouring grid coordinates can result in similar looking 

buildings, so to overcome this a hashing function (shown in  Figure 17)  is implemented in 

order to provide more random distribution.

Figure 17: Grid Layout Coordinates & Hashing [Greuter et al. 2003]

Building geometry is generated by combining geometric primitives to form building sections. 

Each building section is constructed using a different floor plan. The top most section of the 

buildings are created by extruding a three dimensional volume from the most basic of floor 

plans, composed from only a few primitive shapes. In subsequent sections below, another 

primitive  shape  is  added  to  the  previous  floor  plan  and  a  three  dimensional  volume  is 

extruded in the same fashion.  Figure 18 illustrates how the creation of consecutive sections 

are  combined to form the complete  geometric  model  of a building.  Figure 20 shows the 

generated buildings with their textured  faces which are not procedurally generated but are 

selected from a set of 10 building window textures.
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Figure 18: Floor Plan Generation [Greuter et al. 2003]

3.3.2 Real-time Optimisations

The Undiscovered  City is  designed  with  real-time  applications  in  mind  and  implements 

optimisations such as a geometry caching and view frustum culling. The culling technique, 

referred to as View Frustum Filling (shown in Figure 19), renders only the buildings visible 

within the view frustum. By loading and rendering a reduced set of buildings the amount of 

memory required to store the scene and the graphical processing power required to render the 

scene are minimised, enabling the real-time rendering of a large data set like a city. The grid 

road network allows easy detection of building visibility within the view frustum and hence 

provides a computationally efficient method to cull superfluous buildings from view. 

Figure 19: View Frustum Filling [Greuter et al. 2003]

In addition to culling building geometry, a building cache is also implemented. Buildings are 

generated in advance and defined as OpenGL display lists that can be stored in the building 

cache. The cache employs a least recently used algorithm: recently accessed buildings are 
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kept in the cache while older less recently accessed items are replaced. As a result of using 

the building cache, memory use is optimized and buildings can be recalled from cache for 

display an order of magnitude faster than they can be generated from scratch.

Figure 20: Screen shot at street level in the Undiscovered City demo

3.3.3 Discussion

Realism: The single grid pattern does not reflect real cities where a number of patterns are 

present, as a result the road network appears artificial and homogeneous. All of the buildings 

appear angular and modern and are somewhat realistic but unconvincing. Simple windowed 

faces are used and the buildings are not geometrically detailed. 

Scale: The grid layout system can create road networks on a very large scale and is limited 

only by the size of the integer based coordinates. At 232 cells wide, the size is not a practical 

restriction for city generation.

Variation:  The grid system is required for real-time optimization in the system. However, 

the resulting road network has little variation with the only control parameter being the grid 

spacing.  Only  a  single building  type  is  constructed  and  although  the  geometry  for  each 

building is different the cityscape still appears homogeneous.

Input: No input maps or geo-statistical data are required.

Efficiency: Road network and building generation take place in real-time, and figures are 

provided for the generation and rendering of the Undiscovered City.
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Control: Grid spacing can be adjusted using short-cut keys in the application and the changes 

can  be  viewed  in  real-time.  The  building  generation  process  is  not  interactive  and  all 

buildings are generated using a random seed created from the grid hashing technique.

Real-time: The system is designed for real-time applications and can render views of large 

scale  cities  in  real-time  on  commodity  hardware  from  2003  at  interactive  frame  rates. 

[Performance for numbers of buildings being displayed on screen: 200 buildings @60fps, 

500 buildings @20fps, 1000 buildings @5fps].

3.4 L-systems

Parish and Müller present one of the most complete city generation solutions, the CityEngine, 

in a paper titled  Procedural Modeling of Cities [Parish and Müller 2001]. The  CityEngine 

consists  of  a suite  of  components  including  road  generation,  building  construction  and 

building  face creation  that  unite  to  form  a pipeline  for  city  generation.  L-systems 

[Lindenmayer  1968] are  selected  as  the  key  technique  for  procedural  generation  in  the 

CityEngine. Lindenmayer-systems have traditionally been used to model natural phenomena 

but are also suitable for the generation of cities due to their concise nature, computational 

efficiency and data amplification properties. 

3.4.1 Road Network: L-systems

L-systems, as previously discussed, have been used to model the development of plants and 

branching  structures.  These  contain  some  similarities  in  structure  to  road  networks.  The 

CityEngine uses an extended form of L-systems titled  Self-sensitive L-systems to construct 

road networks in a manner which takes existing growth into account.

Input  is  taken  in  the  form  of  2D  image  maps.  Geographical  information  on  elevation, 

vegetation and water boundaries is required, and additional socio statistical image maps can 

also be included specifying information such as population density, land usage, street patterns 

and maximum building heights. A road network generation application, shown in Figure 22, 

is used to manage the generation of roads, and allows the operating user to specify extra 

parameters such as the smoothing angle of road network edges, road width, etc. Although 

only a geographical input map is required, the examples included in the paper, such as Virtual 

Manhattan in Figure 26, utilize a number of different input maps.

27



Chapter 3 City Generation Research

Road generation is accomplished through the use of two rule sets: the Global Goals and the 

Local Constraints. Road segments are initially plotted according to the Global Goals which 

are similar to the goals that a city designer may have. These tentative plans are then refined 

by the Local Constraints which reflect the practical constraints of the real world and the state 

of the existing road network.

Global Goals

• There  are  two different  types  of  roads:  highways  or  major  roads  connect  population 

density centres which can be identified from a grey-scale population density map supplied 

at input, small roads connect to the nearest highway.

• Streets follow some super imposed geometric pattern.

• Streets follow the path of least elevation.

Local Constraints

• Road segments are pruned to fit inside a legal area: line segments extending into water are 

pruned.

• Roads are rotated to fit inside a legal area: a road to the coast bends around the coastline 

like a coastal road.

• Highways  are  allowed  to  cross  an  illegal  area  of  a  certain  distance:  a  highway 

approaching a limited span of water will cross over it like a bridge.

• Roads segments are checked to see if they intersect with existing roads or if they come 

within a certain distance of an existing road junction: Figure 21 shows how proposed road 

segments are modified to satisfy the self-sensitive rules.

Figure 21: Self-sensitive road L-system [Parish and Müller 2001]
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Figure 22: CityEngine GUI displaying Virtual Manhattan after 100 steps [Müller 2006].

3.4.2 Buildings: L-systems

The CityEngine constructs buildings on the road network in a series of distinct stages: define 

building allotments, create building geometry and generate textured faces. To define building 

allotments  the CityEngine  utilizes  data  from the previous  road network generation  stage. 

Figure 23 outlines the stages of allotment generation. Allotments or lots are calculated by 

first extracting blocks from the road network using the roads of the network as the dividing 

borders.  Each  basic  extracted  block  is  then  divided  into  a  series  of  potential  lots  via 

randomized subdivision. Lots that are too small or have no immediate street access are culled 

and removed from the system. The final lots generated by the CityEngine are shown in the 

right-most image of  Figure 23 and appear both varied and practical.

Figure 23: Lot Division Stages [Parish and Müller 2001]

Building geometry is generated through the use of a parametric L-system. Several different 

building styles are implemented including skyscrapers, commercial and residential, with each 

type using a different set of L-system productions. The building type is determined from a 

zone map which can be passed in as an image map input. 
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Figure 24: L-System building refinement from bounding box to the Empire State Building 
[Müller 2006].

The initial state, or axiom, of the building L-system is a bounding box generated from the lot 

footprint  and  a  building  height  image  map,  if  available.  L-system  operations  consist  of 

transformations  (scale  and  move),  extrusions,  branching  and  termination,  and  the  use  of 

geometric  templates  for  roofs,  antennae,  etc.  L-systems  allow  for  the  addition  of  more 

productions  and provide an extensible  solution.  A basic level  of detail  implementation  is 

possible since each iteration of the building L-system is a refinement  of a basic building 

bounding box as shown above in Figure 24.

Figure 25: Building face construction [Parish and Müller 2001]

Building  faces are created procedurally by generating textures using an over-laid series of 

grid-like structures. Several layers of grid-like structures are used with functions that define 

how the layers are combined. The functions dictate which cells from what layer are selected 

to create the final face and can use conditional and statistical information to select cells. Cells 

typically  contain  doors  or  windows  but  can  contain  any  building  face  feature.  The 

construction of a face is shown in Figure 25. The red layer influences the selection of cells 

from the green layer. The resulting face is a conditional combination of multiple layers.
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Figure 26: CityEngine - Virtual Manhattan – Maya render [Parish and Müller 2001]

The CityEngine produces data that can be imported into Maya, a commercial 3D package, for 

final rendering. The sample shown in  Figure 26 illustrates such a rendering from Maya, in 

this case a showcase of Virtual Manhattan.

Figure 27: CityEngine - Virtual Manhattan – DV/reality [Parish and Müller 2001]

A  real-time  implementation  is  available  utilizing  DV/reality software  from  Dimension. 

DV/reality  is  a  large  scale  visualisation  tool  designed  to  run  on  super  computers  and 

distributed rendering applications. There are no real-time rendering features such as level of 

detail  or  geometry  culling  discussed and from the  screen-shot  of  DV/reality  in  action  in 

Figure 27 it is clearly evident that a reduced complexity model is being displayed. (Notice 

how the buildings appear more similar to the left most image of  Figure 24 in contrast to the 

right).
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3.4.3 Discussion

Realism:  The  CityEngine can create a complex and detailed road network but utilizes real 

statistical data making the generative capability of the system difficult to assess. The blocks 

from the road network are divided into realistic and practical lots upon which buildings can 

be constructed. L-system building generation provides an effective method of generating a 

realistic  cityscape  although  the  resulting  buildings  are  basic.  Several  different  types  of 

buildings  including  skyscrapers,  commercial  and residential  buildings  can be created  and 

green  areas  are  also  displayed.  Overall  a  good visual  balance  is  achieved  with  practical 

positioning.

Scale: Scale does not appear to be an limiting factor for the system and is possibly restricted 

only by the size of the input data maps.

Variation: A range of road networks can be created and examples  of different cities are 

shown including Paris – Circular, New York – Grid and San Francisco – Terrain wrapping. A 

range  of  building  function  types  are  catered  for,  but  only  a  limited  range  of  styles  are 

demonstrated. In Virtual Manhattan a convincing clone of New York is shown but it may be 

more difficult to generate other cities where different architectural styles are required.

Input: The minimum input required is a geography map, however all of the samples shown 

utilize  numerous  input  maps  and  include  statistical  data  from  real  world  cities.  This 

dependence  on  real-world  data  requires  the  acquisition  of  geo-statistical  data  to  use  the 

system,  which  is  not  desirable.  Also,  from an  evaluation  point  of  view it  is  difficult  to 

determine which patterns are created by the L-systems and which are created as a result of the 

input data. All of the samples shown utilize numerous image maps to create realistic output 

like that illustrated in Figure 26.

Efficiency: Road network generation is relatively efficient. The large road network of the 

Manhattan sample shown  in  Figure 26 is created in under 10 seconds. The next stage of 

generation,  the  building  stage,  takes  longer  to  complete.  Virtual  Manhattan requires 

approximately 10 minutes to sub-divide the road network into lots, construct buildings and 

create textured faces. It is important to note that although the generation time is documented, 

the time required for Maya to render Virtual Manhattan is not disclosed, and would likely 

take substantially longer than both of the previous stages combined.
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Control: It is unclear how much user interaction is allowed and no interactive features are 

documented. It appears that the system is controlled by writing specific rules for each region 

and thus it would require advanced knowledge and expertise to use the system.  Control is 

also limited with the use of image maps and is not suitable for editing by a novice user.

Real-time: A real-time demonstration is available using the  DV/Reality software shown in 

Figure 27 that  displays  a simplified version of Virtual  Manhattan.  DV/Reality[DVR] is  a 

visualisation tool designed to provide real-time rendering through the use of high powered 

graphics workstations and distributed rendering. No documentation on any real-time features 

of the CityEngine is provided.

3.5 Agent Based Simulation

Lechner et al. [Lechner et al. 2003] apply an agent based technique to generate cities in their 

solution titled CityBuilder. The system is built on the NetLogoTM platform which is a multi-

agent programmable modelling environment based on the Logo programming language and 

is  designed  to  provide  users  with  a  platform  to  explore  emergent  phenomena.  The  city 

generation is implemented by simulating cities using a set of agents that can model specific 

city  entities  such  as  developers,  planning  authorities  and  road  builders.  The  CityBuilder 

system models not only the road network and buildings, but also simulates the growth and 

development of the city over time.

3.5.1 Road Network: Agent Based Simulation

Roads  are  created  from  road  segments  that  are  assembled  according  to  a  grid  pattern. 

Deviation from the pattern is allowed and can be specified via a parameter. A deviation value 

of zero will result in a strictly uniform grid-like road network, a deviation value near one will 

result in an organic like network. The interconnectivity of the network can also be altered via 

constants that dictate the road density and the distance between road intersections.

Input in the form of a terrain height map is required along with a specified water level to 

determine the legal area in which roads and buildings can be placed. Extra parameters such as 

road  density,  grid  spacing,  and  deviation  from grid  can  be  adjusted  using  sliders  in  the 

interface shown in  Figure 28 to alter  the behaviour of the agents.  Additionally users can 

specify certain  parameter  values for specific  areas  by painting on the map using a  brush 

similar to that in a simple paint application. 
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Figure 28: NetLogoTM City Builder Interface [Lechner et al. 2003]

The road segments are created by two types of agents – extenders and connectors:

• Extenders roam around terrain near to existing developments to search for land that is not 

serviced by the road network. Once that area of land has been discovered, it is assessed 

according to road density,  proximity to existing junctions, and deviation from the start 

point. Roads follow parcel boundaries and try not to make large changes in elevation. 

• Connectors roam over the existing road network sampling the distance taken to travel to a 

point  within  a  given  radius  using  a  breadth  first  search  of  the  road  network.  If  this 

distance is too long the connector will propose a road segment between the two points, the 

proposed segment is subject to the same checks as extenders.
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a) b) c) 

Figure 29: Example output of differing city structures: a) Gridded, b) Organic & c) Mixed 
Gridded and Organic [Lechner et al. 2003]

Road networks can be viewed evolving in real-time, and the examples shown were created in 

15 to 30 minutes. Figure 29 c) shows one of the main strengths of the agent based system by 

effectively blending between raster and suburban road styles.

3.5.2 Buildings: Agent Based Simulation

The generation of land usage for buildings is completed via the interaction of a number of 

agents but is primarily due to the work of Developer agents.  Developer agents perform the 

role of urban developers and have similar goals: buy land, request planning permission, build 

and sell. A rectangular grid of patches represent the world and each patch may be occupied 

by a building or road. Patches are grouped into parcels under the ownership of the building 

agent.  The  building  agent  determines  the  zoning  information  of  each  parcel  and  tracks 

attributes of the buildings.

Figure 30: Development Sequence. Yellow is residential, red is commercial, blue is  
industrial. Roads are grey. [Lechner et al. 2003]

Three  distinct  developer  types  are  defined:  residential,  commercial  and  industrial.  All 

developers seek to increase the value of their  land and each developer type evaluates the 

value of land differently and uses a different set of rules to complete its goals. For example: 
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residential developers seek land near the less busy areas of the road network in contrast to 

commercial  developers who look for the busiest sections of the road network. Property is 

reviewed and a site is chosen. A proposal is then prepared that satisfies the clients needs and 

meets the city's restrictions. The proposal must then be reviewed by the city. A developers' 

proposal is only successful if it passes the city regulations and makes a net positive impact on 

the community by providing a service or increasing the value of the land. After this process is 

complete the developer agent starts again looking for more property. Figure 30 illustrates the 

evolution of a small city with snapshot images from left to right.

The  CityBuilder system creates a road network and defines land use that is then used to 

determine building types but does not generate actual building geometry and textures. The 

visualization of the city buildings is not a feature of the system but takes place externally in 

the proprietary SimCity game engine.

3.5.3 Discussion

Realism: The  road  network  appears  realistic  and  has  the  ability  to  effectively  transition 

between  road  patterns,  particularly  between  central  urban  areas  and less  dense  suburban 

areas.  No buildings are generated, but the land usage map appears realistic resembling real 

statistical data similar to that showcased in the chil.us project [UrbanLab 2006]. 

Scale: The output created from the system (as shown in Figure 30) is limited in scale and is 

of a comparable scale to that of a village or small town rather than a city. 

Variation: A realistic  range  of  road  network  patterns  is  displayed  although  they  appear 

decidedly random. Different zones are supported with commercial zones using rigid block 

like road structures and residential areas using sprawling roads.  Three different land usage 

and building types are defined: commercial, residential and industrial. 

Input: A terrain height map and a water level input are required to determine the legal areas 

in  which  buildings  can  be  placed.  Other  input  can  be  specified  by the  user  through the 

interactive application.

Efficiency: CityBuilder models not only the structure of a city but also its evolution and as a 

result  of  the  added  complexity  the  algorithm  is  computationally  intensive  and  time 

consuming. A city of only limited scale similar to a village can be generated over a period of 
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approximately 15 minutes (no hardware specification stated), not including the generation of 

any building geometry or textures. 

Control:  An innovative feature is available in the form of a paint tool that can be used to 

paint  parameter  values  on  the  map.  Numerical  parameters  such  as  road  concentration, 

deviation and scale can be specified via an interactive application using the various sliders 

and widgets of the GUI. 

Real-time: There are no real-time considerations or even a 3D model of the city. 

The  system  could  be  easily  expanded  but  with  an  algorithm  of  high  computational 

complexity it is not suited for real-time procedural generation and at the moment is more 

suitable for simulation applications.

3.6 Template Based Generation

Sun,  Baciu  et  al  propose  an  alternative  approach  to  creating  cities  in  their  2002  paper 

Template-Based Generation of Road Networks for City Modeling. They use a collection of 

simple templates and a population adaptive template [Sun et al. 2002]. The basic concept of 

the system is that a road network template is applied to a geographic map as a plan and then 

the roads are deformed subject to local constraints.

3.6.1 Road Network: Template Based Generation

Several  inputs  are  required  in  the  form of  2D image  maps.  A colour  image  map  which 

contains geographical information on land/water/vegetation is required. A grey-scale height 

map image to specify elevation is required. A population density map is required for the 

population-based template and is used to determine the varying road network density.

Population based Radial Mode Raster Mode Mixed Mode
Figure 31: Road Patterns [Sun et al. 2002]

The population-based template is implemented using a Voronoi diagram [Sun et al. 2002]. A 

road system is created that is representative of the population distribution. Road networks are 
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suitably dense in highly populated areas and sparse in less populated areas. This is made 

possible by extracting density points from the population density input map and using the 

points as input sites for the Voronoi diagram. The edges or cell boundaries from the resulting 

diagram  are  used  to  create  the  interconnected  road  network.  The  other  templates  use 

procedural patterns to create the road network. The Raster Mode, Radial Mode and Mixed 

Mode templates  serve  as  simplistic  growing patterns,  with  roads  starting  from a  defined 

centre point and growing in an iterative process toward the edges of a bounded area. The 

Mixed Mode is simply a compound of one or more of the other basic templates.

Templates define only the desired road pattern, and just as road planners must respond to 

practical constraints, so must the pattern. Roads deviate from the supplied pattern changing 

direction rapidly to avoid obstacles such as water and curve gradually to avoid large changes 

in elevation. Roads are created in short steps.  Figure 32 shows a diagram of the process in 

action. At each step the system emits several fixed length radials and selects the radial with 

the least variation in elevation that is in a legal zone. In the case of a tie between two radials 

the path of least deviation from the original path is chosen. The angles at which the radials 

are drawn is restricted by a freedom factor, F, which limits the maximum angle of deviation 

for each radial. The final shape of the road is a result of terrain deviation and the selected 

pattern is followed only as strictly as the freedom factor dictates it to be followed.

Figure 32: Adaptive Roads [Sun et al. 2002]
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Figure 33: Results clockwise: Population-Based Template, Radial Mode, 
Raster Mode and Mixed Mode. [Sun et al. 2002]

3.6.2 Discussion

Realism: The applied template technique includes patterns found in real cities and the mixed 

mode pattern helps recreate the combination of patterns also present in city road networks. 

However, the results do not achieve the complexity and scale of real city road networks.

Scale: The examples shown in Figure 33 demonstrate limited complexity and are insufficient 

in scale to be classed as city scale road networks.

Variation:  A choice of four templates is demonstrated and each can be deformed by the 

random terrain providing limited though varied output.

Input: Few inputs are required but include several image maps such as a terrain height maps, 

a standard geographic map and a population density map for the population based template.

Efficiency: No information is provided on the performance of the generation process.

Control: A reliance on statistical data and no indication of any user interaction to control the 

road network generation would imply that this solution is rigid and inflexible.

Real-time: No 3D implementation is shown and no performance figures are provided.
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3.7 Split Grammars

The Instant Architecture solution presented by Wonka et al. focuses only on the generation of 

realistic buildings through the use of a new type of formal grammar called split grammars. 

These grammars are based on the concept of shape [Wonka et al. 2003].

3.7.1 Buildings: Split Grammars

Split  grammars  are  based  upon the  previous  research  and  principles  of  shape  grammars 

pioneered by Stiny [Stiny 1980]. A shape grammar is a formal grammar not unlike L-systems 

but it is based on the fundamental primitive of shapes rather than letters or symbols. Rules or 

productions  map a  shape,  or a number  of shapes  to be be replaced  by another  shape,  or 

number of shapes. An initial set of shapes is supplied to start with, and the rules are applied in 

an iterative manner.

The basic building blocks of the system, and the objects that the grammar manipulates, are 

simple attributed, parametrized, labelled shapes called basic shapes. A large number of rules 

or productions are required to transform the shapes. For the examples shown in the paper a 

database of around 200 rules and 40 attributes was assembled. Figure 34 shows an initial state 

and simple set of sample rules.

Figure 34: An example of split grammar [Wonka et al. 2003].

An initial starting state is provided and then transformed by means of an iterative process 

using  rules  from the  database.  The  rules  split  buildings  into  faces,  faces  into  structural 
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sections and structural sections into components such as windows and so on. This is shown in 

Figure 34 with the end result shown of the completed derivation in Figure 35.

Figure 35: Completed derivation of the grammar in Figure 34 [Wonka et al. 2003].

Attributes assigned to shapes are propagated from the initial state down through the system. 

The attributes store information about the building like its symmetry,  age, use and visual 

properties.  These  are  later  used  to  render  the  building  but  are  also  used  to  help  match 

transformation rules and find relevant replacements. In addition, a control grammar is applied 

that can change the attributes of basic shapes in order to apply spacial design concepts, such 

as setting the first floor of a building to be a shop or applying a vertical detail to a column of 

shapes. The resulting building models produced by the instant architecture system contain 

detailed local features such as window sills  but also distinctive building features such as 

vertical details on the edges of buildings.

Figure 36: Screen shot of Instant Architecture [Wonka et al. 2003].
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3.7.2 Discussion

Realism: The split grammar technique produces very realistic buildings even going as far as 

to effectively recreate different styles of architecture.

Scale: The  examples  shown  in  Instant  Architecture  are  limited  in  scale,  but  serve  to 

demonstrate the strengths of the system by creating a small group of buildings in a town 

square or  centre.  A high  level  of  variation  is  shown in the examples  but  the number  of 

buildings is limited and is not of city scale.

Variation: Building style varies greatly helping to produce very realistic output, however it 

is not clear how many different buildings types can be produced.

Input: The system requires substantial initial input with samples like those shown in Figure

34 requiring a database containing approx. 200 rules and 40 attributes. The authors report that 

this took around two weeks to assemble. From this database a variety of buildings of different 

styles can be created and the data can be distributed with the system, without requiring the 

user to assemble their own dataset.

Efficiency: The algorithm, although complex, is quite efficient. It can create buildings of up 

to 10,000 polygons in around 3 seconds on an Intel Pentium 4 at 2Ghz.

Control: No interactive editor or GUI is described, but the split grammar rules can be edited 

in the database manually.  This process is described as non trivial  and requires a level of 

expertise and experience using the split grammars. It could well be a barrier to extending the 

system. There may also be constraints on the size of the system and the number of rules that 

it can manage with a reservation expressed that some derived designs may not even make 

sense if more rules are added. 

Real-time:  The detailed  buildings  that  the system produces  can be explored in  real-time 

however the number of buildings on display at any one time is limited. It is clearly a limit of 

the system with such a high polygon count. Level of detail support would be essential to use 

the system for real-time applications.

In conclusion, the Instant Architecture solution produces realistic and detailed buildings but 

may require a level of expertise to operate that restricts it to an academic audience.
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3.8 Conclusions

In this Chapter we have reviewed previous research into the procedural generation of cities. It 

is important for us to recognise the areas that can be improved and to identify additional 

goals.  In evaluating the existing research we used a common set of criteria: Realism, Scale, 

Variation, Inputs, Efficiency,  Control and Real-time provisions. The systems adopt unique 

approaches to the city generation problem and have individual strengths and weaknesses. The 

highlights include: L-systems road generation,  Subdivision lot creation and the interactive 

user interface of the agent based approach. After completing this analysis, it can be concluded 

that in general the previous research efforts can achieve a high level of variation, realism and 

scale but with the exception of the agent based approach do not provide an effective method 

of control.

The goals for our city generation system to improve upon this existing work are:

•Accessibility – input data such as geo-statistical data or complex architectural rules should 

not be required to use the system.

• Interactivity  –  the  system  should  be  capable  of  fully  autonomous  generation  but  also 

facilitate interactive control.

•Real-Time generation – for effective control over generation and to expand the the range of 

applications, the system should generate a city model in near real-time speed.

The  goal  of  our  research  is  to  create  a  city  generation  system  suitable  for  real-time 

applications that is capable of creating realistic, varied and large scale cites in an efficient 

manner.  Additionally it should be accessible to non-expert users and provide an effective 

method of interactive control.
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Chapter 4
Interactive City Generation Design

In the previous chapter we outlined and evaluated the previous research into city generation 

systems. In this chapter we present the design of our city generation system. We describe the 

algorithms and techniques involved in generating primary roads, secondary roads, blocks, lots 

and buildings. 

4.1 Overview

A key design goal of the system was that it  would allow the user close control over the 

generation  process  by  means  of  direct  manipulation  of  the  algorithm  parameters  via  an 

accessible  and  intuitive  visual  interface.  Furthermore  it  was  regarded  as  crucial  that  the 

results of these manipulations would be computed and rendered in real time so that the user 

gets immediate feedback on their actions . This is what we mean when we state that Citygen 

is an interactive procedural city generation system. The motivation for this is so the user can 

engage with the system by moving nodes or changing parameters, see the effect immediately, 

tweak again, and so on. This iterative design process can be continued as long as necessary 

until the desired results are obtained.

Similar to previous research, the generation of a city model is achieved via the execution of a 

number of steps  [Parish and Müller 2001]. Each step may employ a different algorithm to: 

facilitate user interaction, generate a feature or obtain a relevant data structure. To explain the 

city  generation  process  these  steps  are  grouped  into  three  main  stages.  Each  stage 

corresponds to  one  of  the constituent  city  structure  components,  previously identified  by 

urban  design  authors  [Lynch  1960][Alexander  et.  al.  1977] and  discussed  in  Chapter  3. 
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Before describing the individual steps and algorithms applied in the city generation system, 

we list the main stages and provide a general outline of our design.

1. Primary  Road  Network:  serves  as  the  traffic  flow  arteries  of  the  city,  whose 

function it is to provide transport around the city and from one region to another.

2. Secondary/Neighbourhood  Roads: are  the  roads  inside  the  regions  enclosed  by 

primary road network. Neighbourhood roads work by providing access for the area to 

and from the primary road network. Each region may display a distinct style.

3. Building Construction:  Buildings  are  situated  and constructed  on lots  which  are 

identified from the enclosed areas within the secondary or local road network.

The essential character of a city and the boundaries of the neighbourhoods are dictated by the 

pattern of the primary road network (grid-like,  radial  etc..)  and therefore this  acts  as the 

starting point of the generation process. The user can create,  and manipulate,  a graphical 

representation of a primary road network. Vertices of the primary road graph are called nodes 

and act as control points. They can be added, moved, deleted and so on. The roads which 

connect  these nodes are procedurally  generated by the system,  mapped to the underlying 

terrain model, and rendered in real time.

Once a region is enclosed the secondary road generation process is initiated automatically. 

The system contains a variety of road network patterns and the user can select which road 

network pattern to apply based on the results desired (for example, grid-like or meandering 

suburban roads) and assign different patterns to different parts of the city. Several pattern pre-

sets  are defined for convenience and each can be easily modified  to  alter  the efficiency, 

connectivity,  scale  and  flow  of  the  resulting  road  network.  Once  again,  the  results  are 

computed and rendered in real time, allowing direct interactive manipulation of the process.

The final stage of generation is the construction of buildings. In order to accomplish this it is 

necessary to compute building footprints onto which the buildings should be placed. This is 

done  by  calculating  all  of  the  enclosed  areas  between  the  secondary  roads  and  then 

subdividing them into lots. The buildings are then placed within the lots and the shaders and 

materials are applied to the generated geometry.  During the generation process the user can 

make changes to any stage and see the results of the changes propagate through in real-time.
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Taking each of these generation stages in turn, we explain the operation of the system, paying 

particular attention to the problems that arise, and describing the solutions and algorithms 

employed to solve these problems.

4.2 Primary Road Network

Road  networks  are  represented  as undirected  planar  graphs and  are  implemented  as 

adjacency lists. An adjacency list contains an entry for each node and each of these entries 

comprises of a list of nodes that this node is directly connected to (see Figure 37). This data 

structure  provides  an  efficient  way  to  store,  edit  and  perform  operations  on  graph 

representations of road networks.

Figure 37 Adjacency List Data Structure

These structures form the basis for all of our road network graphs, including both primary 

and secondary roads. We use two different graphs to store data solely for the primary road 

network, shown in Figure 38 and each neighbourhood region also uses an additional graph to 

store data for its' own secondary road network.

The two primary road network graphs are simply termed, the high level graph, and the low 

level  graph.  The  nodes  of  the  high  level  graph  correspond  directly  to  primary  road 

intersections  and  an  edge  between  two  nodes  indicates  that  these  nodes  are  connected 

together with a primary road. So, in other words it stores the  topological structure of the 

primary road network. The low level graph defines the actual path each road takes across the 

terrain. It will also have nodes corresponding to primary nodes but also many more nodes 

between these indicating points on the terrain through which the road passes. By keeping the 
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high level topological road graph separate from the low level graph, we minimise the data set 

for processing and provide a means for the efficient extraction of connectivity information.

Figure 38 Primary road network graphs, Yellow: High level graph, Red: Low-level graph, 
Orange: Plot samples and interpolation spline.

Nodes of the high level graph function as control nodes and can be interactively manipulated 

within the application in order to to adjust the topography of the primary road network. The 

nodes and edges of the low level graph are then computed by the system using the sampling, 

plotting and interpolation processes to construct the actual road routes through the terrain. We 

call these adaptive roads. After each manipulation the low level road graph contains the data 

required to render the roads. The manipulations of control nodes in the topological graph take 

place in a graphical interface with a real-time display of the final adaptive roads.

4.2.1 Adaptive Roads

The concept behind adaptive roads is to fit road segments into the surrounding environment 

and ensure that the roads reflect the world in which they occupy. This is accomplished by 

plotting the road automatically using a sampling technique and various plotting strategies to 

adapt the roads to the terrain. In practice, to use adaptive roads, the user simply positions the 

source node and destination node of the road. These nodes correspond to the control nodes of 

the  high  level  graph.  The  system then  plots  the  path  in  real-time,  providing  immediate 

feedback and tactile control for the user to fine tune each segment. In addition constraints are 

employed to maintain the integrity of the road graph. Each proposed segment is automatically 

snapped to existing infrastructure whenever possible. Aside from aiding the user to rapidly 
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create  a  road  graph,  these  constraints  ensure  that  the  user  cannot  create  an  invalid  road 

segment or leave the  road graph in an unusable state. By fitting each road to the environment 

a sense of cohesion is achieved in the resulting road network, along with increased realism 

and character.

4.2.2 Sampling

Roads are plotted by starting from a source point and sampling a set of points at regular 

intervals to define a set of possible paths to the destination. The road graph is stored as an 

undirected graph and the plotting operation is designed to be commutative (i.e. plot(a→b) == 

plot(b→a) ).  Therefore the algorithm was designed to operate  bidirectionally by sampling 

simultaneously  from  both  the  source  node  and  the  destination  node,  and  then  finally 

terminating by meeting in the middle.

Parameters are used to control the size of the samples, the number of samples taken and the 

maximum deviation allowed from the target direction.

dSAMPLE : sample size

nSAMPLE  : number of samples

θDEV  : angle of deviation

Each control point travels a distance dSAMPLE and deviates from the direction of the destination 

point  less than an angle  θDEV.  A set  of possible control  points  is  obtained from a fan of 

nSAMPLE evenly spaced samples which are evenly distributed over an arc of degree 2θDEV .

Figure 39 Road interval sampling 

The  road  plotting  process  is  complete  when  a  sample  is  within  a  constant  dSNAP of  the 

destination point, this is guaranteed by ensuring θDEV   < 45o  and dSNAP > dSTEP*cos(θDEV). By 
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limiting the deviance angle of the road samples the resulting roads are free to meander when 

necessary but not without purpose as they are bounded to travel towards their goal.

When the  sampling  is  complete  and the  path  has  been  plotted,  the  selected  samples  are 

inserted  into  a  spline  where  fine  grained  segments  can  be  interpolated  and extracted  for 

insertion into the low level road graph for final rendering. A Cubic Hermite spline is used 

with the Catmull-Rom approach applied to tangent generation [Paeth et al. 1995]. This spline 

technique was selected because it is easy to compute and produces an exact fit to the sample 

values. Approximated splines can result in the road terrain intersections.

4.2.3 Sample Selection Strategies

Different selection strategies are employed to choose the samples acquired in the sampling 

process. Samples are primarily selected from the elevation difference between the sample and 

the previous plot point. In some strategies additional measurements are taken into account. A 

number  of  these  different  sample  selection  strategies  are  demonstrated  in  Figure  40 and 

described below.

Figure 40 Adaptive roads in Citygen.  Blue - Minimum Elevation, 
 Red - Least Elevation Difference, Green - Even Elevation Difference. 

4.2.3.1 Minimum Elevation Strategy

This is the most basic strategy in which the sample with the lowest elevation is selected 

resulting in a road path similar to the route a river or a stream would take. 
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4.2.3.2 Minimum Elevation Difference

A more competent strategy than the first, this strategy avoids elevation drops or rises, and 

seeks to maintain an even elevation for the complete road segment. However a problem can 

occur when constructing roads between a source and destination node with a large elevation 

difference. In this case the  Minimum Elevation Difference strategy will avoid the required 

ascent and descent until the last step when  it has to join in the middle. On certain terrains this 

can result in a road with two smooth road sections and a steep section joining the two. 

4.2.3.3 Even Elevation Difference

To improve  on  the  Minimum Elevation  Difference strategy a  technique  with  some  more 

foresight was required. This is the impetus for the Even Elevation Difference strategy which 

aims to plot an even and smooth path for the road by looking ahead and re-evaluating the 

elevation goal as it progresses. This strategy operates by calculating the elevation difference 

between the current position and goal position. Based on the progress being made towards the 

goal, the algorithm seeks to ascend or descend an even portion of total elevation for each plot 

point.  This strategy operates by selecting the sample with the minimum difference between 

distance covered and elevation ratio, and the goal distance and elevation ratio.

MinAbs(elevationSTEP / dPROGRESS  -  elevationDEST / dDST)

Each sample aims to cover an even portion of the total road elevation. The resulting roads are 

smooth curves that meander when necessary weaving through hilly terrain and searching for 

even paths to ascend or descend large elevation differences.

4.3 Secondary Road Generation

Secondary roads service the local area within districts by providing access to and from the 

primary road network.  In our system,  districts  are  the regions  of  the terrain enclosed by 

primary  roads.  We  call  these  city  cells and  they  form  the  basic  units  upon  which  the 

secondary road generation process operates. The generation of the secondary road network 

within  cells  is  accomplished  using  a  growth  based  algorithm  similar  to  the  L-systems

technique applied extensively to the generation of natural phenomena. There are important 

aspects to this process that will be described:
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City Cell Extraction: How do we extract the cells from the primary road network graph?

Secondary Road Growth: How do we generate a range of road patterns in the secondary 

road network within these cells?

Snap Algorithm: How do we efficiently obtain information on the intersection status and 

proximity to the existing roads in the network?

4.3.1 City Cells

City cells are formed from the enclosed regions of the primary road network. These regions 

can be determined by extracting the closed loops from the high level primary road graph. To 

extract the cells we execute a Minimum Cycle Basis (MCB) algorithm [Eberly 2005] on the 

primary road network graph and store the cell data in self contained units. Our design enables 

the efficient parallel execution of road generation within cells by ensuring that all cells are 

self contained and that the shared data is minimal.

The Minimum Cycle Basis is defined as the unique set of minimum cycles in a graph that all 

other cycles can be constructed from. There are numerous algorithms available to compute 

the MCB but few take the position of vertices into account, instead operating solely on the 

structure of the graph. 

Figure 41: MCB algorithm illustration

The MCB algorithm used in Citygen is that described by David Eberly in [Eberly 2005]. Our 

implementation of the algorithm works by first sorting the nodes by the x location and then 

extracting cell cycles in a left to right order. Cycles are extracted by using the clockwise 

orientation of edges to prioritise exploration paths. As cycles are found they are marked and 
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removed  from the  graph  so  as  not  to  influence  further  searches.  Filaments  are  ordered 

sequences of vertices where the end vertices are either end points or branch points and those 

in the middle have exactly two adjacent vertices. In Figure 41 the cycle {1,3,10,9,4} is first 

extracted and the edges are marked cycle edges, then edge {1,3} is removed and filaments 

connected to vertices 1 and 3 are removed and not stored as they are not part of any further 

cycles. This brief outline is included to provide an insight into the operation of the algorithm, 

for a detailed explanation of the algorithms operation see  [Eberly 2005].

After the cycles and filaments have been extracted, their containing cycles are determined 

and the data is grouped and then stored in a cell data structure. Each cell is self-contained and 

consists of a private road graph with the boundary cycle, filament roads and a small set of 

parameters to control road generation. As a result of this self contained design, it is possible 

for secondary road generation to be executed efficiently in parallel.  Parallel  generation of 

cells is currently implemented for multi-core systems running Citygen, but has a clear path to 

be extended further to use GPGPU programming.

4.3.2 Secondary Road Growth

Once a city cell is created, the generation of secondary roads  is initiated within it using a 

growth based algorithm. The choice of using a growth based algorithm was based on success 

of  the  prior  L-system work  of  Prusinkiewicz  on  plants  [Prusinkiewicz  and Lindenmayer

1990] and  Parish and Müller on city generation  [Parish and Müller  2001].  Although our 

application does not use L-systems it shares the concept of  parallel growth. Our generation 

algorithm  is  distinct  in  that  it  is  computationally  efficient  and  contains  a  number  of 

optimisations to enable it to run in real-time. The generation is flexible, producing a wide 

range  of  output  and   functions  by adding  road  segments  in  a  parallel  fashion  similar  to 

organic growth.

Road construction begins from the bordering primary boundary roads and grows inwards in a 

parallel fashion. The starting point for the initial road segment is obtained using a deviated 

midpoint  from a  selection  of  the  longest  cell  boundary  sides.  Once  the  initial  segment's 

position and direction are calculated they are placed on a queue for processing.  The road 

generation process is sensitive to existing infrastructure and new segments can connect to, 

and extend, existing roads. Information about the status of a proposed segment in relation to 

the road graph is obtained via an extensive snapping algorithm. This algorithm (described in 
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detail  in  section  4.3.2.1)  provides  information  on  intersections  and  on  the  proximity  to 

neighbouring segments and nodes. Using this information,  the road growth algorithm can 

make an informed decision to  modify each proposed segment  and join it  to  the existing 

network, or discard it if it does not meet the criteria set by the cell control parameters.  Shown 

below in Figure 42 is a pseudo-code description of the algorithm.

// calculate initial road segments
for each boundaryRoad in longest(boundaryRoads)

midPoint = calculate deviated road midpoint
sourceNode = insertNode(boundaryRoad, midPoint)
roadDirection = calculate deviated boundaryRoad perpendicular
if placeSegment(sourceNode, roadDirection, ref newNode)

nodeQueue.push(newNode, roadDirection)

// process road growth
while(nodeQueue is not empty)

sourceNode = nodeQueue.front().node;
roadDirection = nodeQueue.front().direction;
nodeQueue.pop();

for ParamDegree iterations
newDirection = rotate roadDirection by i*(360o / ParamDegree)
deviate newDirection
if placeSegment(sourceNode, newDirection, ref newNode)

nodeQueue.push(newNode, newDirection)

// function to place road segment, returns true on success
placeSegment(sourceNode, roadDirection, ref newNode)

roadLength = calculate deviated ParamSegmentLength
targetPos = sourceNode.pos + (roadDirection * roadLength)

switch(snapInformation(ParamSnapSize, sourceNode, targetPos))
case: no snap event

targetNode = createNode(targetPos, roadLength)
createRoad(sourceNode, targetNode)
return true

case: road snap event
if random value is less than ParamConectivity

snapNode = insertNode(snapRoad, snapPoint)
newNode = createRoad(sourceNode, snapNode)
return true

case: node snap event
if random value is less than ParamConectivity

newNode = createRoad(sourceNode, snapNode)
return true

return false

Figure 42: Road Growth Pseudo-Code(Control Parameters shown underlined and orange)
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Figure 43: Road Growth 10, 100, 300 & 1000 steps.

Each cell specifies a control parameter set which is used by the growth algorithm to control 

the  generation  process.  Example  parameter  sets  are  shown  in  section  5.5.1.  Control 

parameters used for road generation include segment size, degree, snap size and connectivity: 

● Segment size controls the size of each proposed segment and hence granularity of the 

neighbourhood road  network.  Small  segment  sizes  result  in  tightly  packed streets 

whereas larger ones will give a more sparse road network. 

● Degree controls the number of times a road branches at any given node. 

● Snap size alters the distance threshold used to connect to existing infrastructure and 

hence influences the efficiency of the road network. 

● Connectivity changes  the  probability  that  segments  will  connect  together  thus 

affecting road network flow. 

A  deviance  parameter partners  each  control  parameter  and  enables  relevant  noise  to  be 

introduced by altering  the  parameters  at  each  step of  road generation.  A seeded random 

generator is used to ensure that all generation is 100% reproducible.
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Using this relatively simple growth algorithm along with a concise parameter set, we can 

generate a range of different road patterns which can be specified on a cell by cell basis. 

These patterns range from regular raster patterns typical in modern city centres, to irregular 

industrial patterns and even  random meandering patterns of organic development.

Figure 44: Early road growth patterns: Raster, Industrial and Organic

4.3.3 Snap Algorithm

The  snap  algorithm  provides  information  on  the  proximity  and  intersection  status  of  a 

proposed segment relative to the existing local road network graph. Proposed segments are 

then  refined  by the  road  growth  algorithm using  this  data.  The  snap  algorithm is  called 

frequently  by  the  growth  algorithm  and  has  a  strong  influence  on  road  generation 

performance in the system.

The snap algorithm receives the parameters:  a – the root 

node, b – the target position and also a specified Snap Size.  

Figure  47 illustrates  the  resulting  snap  area  (shaded  in 

grey)  for  the  proposed  segment  ab,  with  the  Snap  Size 

specifying the width and radius of the snap area. A  Snap 

Event is created for any segment that causes an intersection 

or  is  within  the  defined  snap  area.  Several  events  may 

occur on the proposed segment ab, but each of these events 

are  prioritised  by  their  distance  to  the  root  a,  with  the 

closest events being the most important. 
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In order to calculate snap information for the desired snap area illustrated in  Figure 47 a 

number  of  proximity  and  intersection  tests  are  required.  These  series  of  tests  are 

computationally intensive, but a number of optimisations have been devised that improve the 

performance  significantly.  We  will  now  describe  these  optimisations  and  outline  the 

operation of the required tests.

4.3.3.1 Extended Bounding Box Exclusion

The first step to optimising the speed of the snap algorithm is to minimise the number of 

segments that require testing. This is achieved by using a technique of minimal computational 

expense,  in  the  form  of  a  two  dimensional  axis-aligned  bounding  box  test.  The  snap 

algorithm must not only report on the intersection status of each proposed segment, but also 

on the proximity to existing segments. For this reason an extended bounding box is used (see 

 Figure  46).  The  extended  bounding box is  calculated  by simply  extending  the  standard 

bounding box for  only the  proposed  segment  by the  distance  specified  in  the  Snap Size 

parameter.  Using  this  method  we can  guarantee  that  segments  which  may  not  cause  an 

intersection, but may infringe on the snap area, are not excluded prematurely.

Figure 46: Extended Bounding Box Test: 

The extents and position for each segment bounding box can be obtained by calculating a 

segment half vector for the extents value, and then using this also to determine the midpoint 

for the position value. The execution of the extended bounding box test excludes up to 90% 

of road segments from further testing in a typical road network thus providing a considerable 

performance improvement with little expense.
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4.3.3.2 Testing Procedure

As previously discussed a number of different proximity and intersection tests are required to 

evaluate  the  snap  area  (shown  in  Figure  45).  The  snap  algorithm  testing  procedure  is 

composed of three ordered tests:

1. Proposed segment to existing node proximity test.

2. Proposed segment to existing segment intersection test.

3. Proposed node to existing segment proximity test.

Figure 47: Snap Algorithm Tests: the active elements in each test are coloured in red.

These three tests define the procedure, that segments not excluded by the extended bounding 

box test are subject to. Due to the frequency of which the Snap Algorithm is executed, further 

optimisation is still important to maintain a high level of performance. A basic optimisation is 

implemented  by ordering  the  tests  according  to  the  priority  of  the  snap  events  they  can 

provide. As previously discussed in section 4.3.3, the priority of a snap event is dictated by its 

position relative to the root  a of a proposed segment  ab, with the events closer to the root 

assigned the highest priority. Since only a single snap event is returned, new snap event of 

lower priority can be ignored. Tests 1 & 2, the node proximity and segment intersection tests 

are executed first as they can provide snap events along the full length of segment  ab. In 

comparison  the third test,  segment  proximity,  can only provide snap events  at  the target 

position b, which is assigned the lowest priority. So, if a snap event occurs in either of first 

two tests, then the entire series of third tests are not executed as a snap event closer to the 

root, a, cannot be provided.
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4.3.3.3 Test 1: Node Proximity

The node proximity test checks the distance between the existing nodes in the road graph and 

the proposed segment ab. To calculate the distance we use an algorithm which calculates the 

distance from a point to a line [Rourke 1998]. A pseudo-code description is listed below: 

// distance from point p to line ab
distanceToLine(a, b, p)

ab = b – a
ap = p - a
r = (ap).dotProduct(ab) / ab.squaredLength()
s = (ap.perpendicular()).dotProduct(ab) / ab.squaredLength()
return abs(s) * ab.length()

Figure 48: Distance from point to line pseudo-code

In  addition  to  calculating  the  distance  between  nodes  and  the  proposed  segment,  this 

algorithm can also provide information on the location of each node. The values of r and s 

indicate the position of each node relative to the proposed segment ab.

● r, indicates the position of a node relative along the length of ab. For example: if a 

node is located at a, the r value will be 0 and if it is located at b, the r value will be 1. 

Any node where 0 ≤ r ≤ 1 is located within the grey band illustrated in Figure 49.

● s, indicates the position of a node relative to the perpendicular of ab. For example: if a 

node is located on the left of ab, the s value will be less than 0 and if it is located on 

the right of ab, the s value will be greater than 0. 

Figure 49: Node distance function scalars r & s
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The values of r and s are used by the node proximity test to enable a number of optimisations:

The s-value is proportional to the distance that a point is located from the line segment. Once 

the Snap Size is expressed in terms of s, the full distance does not need to be calculated and 

the computation for node proximity tests can be reduced.

The r-value indicates the location of a node along the line  ab 

and  is  important  in  treating  how  possible  snap  events  are 

processed.  Normal  node  proximity  events  require  that  the 

condition 0 ≤ r  ≤ 1 hold true. This ensures that the snap event 

occurs within the line segment ab and the node is located within 

the lines passing through a and b perpendicular to ab. 

If the r-value exceeds 1 an additional test may be triggered. If 

1 > r ≤ 1 + (Snap Size / ab.length), then the node is located in 

the purple area, shown in  Figure 50. In this case an additional 

point to point distance test is triggered which checks whether a 

snap event occurs in a circular area around b. Executing this additional distance test only 

when a snap event is probable reduces the overall computation required.

Finally, because snap events are prioritised closest to the root, and the r-value indicates the 

location of a node on segment ab, this value can also be used as a priority indicator. By using 

the r-value as a priority indicator  we remove the need for any additional  computation to 

determine snap event priority.  If a snap event occurs, the r-value of the offending event is 

stored. Since only higher priority events are significant, this new r-value sets the benchmark 

for all future tests. A test is only executed if r is less than the lowest previous r and greater 

than zero. For example: if a snap event occurs on the segment body ab, the r-value obtained 

will lie between 0 and 1, so any snap events beyond 1 will now be irrelevant, and so the 

additional distance test will not be executed. 

If no snap events occur in the node proximity test the values of r and s for each node are still 

stored. These values can be used by future tests to implement optimisations.
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4.3.3.4 Test 2: Segment Proximity

The segment intersection test checks for intersections between existing segments in the road 

graph and the proposed segment  ab.  Efficient execution is achieved by executing the full 

segment intersection test only when an intersection has been determined probable. 

The probability  of  an intersection  is  calculated  by using the data  obtained  in  Test  1.  As 

explained in the previous section, the node distance data defines the position of nodes relative 

to the proposed segment. Therefore, if the nodes of the segment being tested contain s-values 

of a different sign, then they must lie on different sides of the proposed segment  and an 

intersection on the line   ab   occurs. Also, if both node r-values place the nodes' location within 

the proposed segment  ab or on opposing extensions of  ab, then an intersection is probable 

within the bounds of the  line segment ab. The application of this optimisation results in a 

98% reduction of all segments intersection tests in a typical city neighbourhood cell.

Once an intersection has been determined as probable the following segment intersection test 

is executed. A pseudo-code description of the algorithm is listed below [Rourke 1998]. 

// check for intersection between line segment ab & cd
lineIntersection(a, b, c, d, r, s)

ab = b – a
cd = d - c
denom = (ab.x * cd.y) - (ab.y * cd.x);
if(denom == 0) return false; // lines are parallel
ca = a - c
r = ((ca.y * cd.x) - (ca.x * cd.y)) / denom; // r = pos on cd
s = ((ca.y * ab.x) - (ca.x * ab.y)) / denom; // s = pos on ab
if(r == 0 && s == 0) return false; // lines are coincident
return true;

Figure 51: Distance from point to line pseudo-code

In a similar style to the operation of test 1, the distance between a snap event and the root 

node is not calculated explicitly and a scalar r-value is again used as the priority indicator. 

The same benefits apply in this stage. No additional computation is required to determine 

snap event priority and the r-value provides another means of discarding unnecessary tests 

that  cannot yield an event of  significant priority and lower r-value.
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4.3.3.5 Test 3: Segment Proximity

The segment proximity test checks the distance between the existing segments in the road 

graph and the target position defined by b. To calculate the distance from a segment to a point 

the same algorithm as described in Test 1 and shown in Figure 39 is used [Rourke 1998].

This is the last test executed by the Snap Algorithm procedure and is only called if no snap 

event occurred in the previous tests. This test is scheduled last because of the fact that it can 

only detect snap events located at the end of the proposed ab which is assigned the lowest 

priority. No special optimisations are implemented in this test and the check simply calculates 

the distance between node b and every other line segment.

4.3.4 Summary of Secondary Road Generation 

We have discussed City Cells, Road Growth and the Snap Algorithm. City Cells are extracted 

from the primary road network and each cell  maintains  a  local  road network graph thus 

reducing the relevant data set for secondary road generation within the cell. Road Growth is 

achieved by using a simple growth algorithm with a minimal  control parameter set. Even 

though the secondary road network is divided among the City Cells the network data set is 

still of a significant size. The Snap Algorithm employed by the growth algorithm is called 

frequently by the growth algorithm and its efficient operation is critical for road generation 

performance.  The snap algorithm applies an extended bounding box test to filter the road 

segments for testing. Then, three tests are implemented with a number of optimisations to 

enable the snap algorithm to provide proximity and intersection information efficiently. Once 

the secondary road network is complete the next stage of generation is the identification of 

lots and the construction of building footprints and geometry.

4.4 Building Generation

The  building  construction  stage  of  Citygen  is  accomplished  in  three  stages.  Firstly  the 

enclosed regions are  extracted  from the secondary road graph by applying  the Minimum 

Cycle Basis algorithm as described previously in Section 4.2. Secondly the lots are identified 

by  splitting  the  regions  into  minimal  tracts  or  parcels  of  land  suitable  for  development. 

Thirdly and finally the building footprints are inset from the lot boundaries and the building 

geometry is constructed and textured.
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4.4.1 Blocks

Blocks represent the enclosed regions of the secondary road network. The role of the block is 

to add any additional geometry such as footpaths, signposts, traffic lights or post boxes onto 

the region. Currently only the footpaths are added. These footpaths are constructed by first 

insetting  the  cell  boundary  by  the  value  specified  in  the  footpath  width parameter.  The 

original  cell  boundary  and  the  inset  boundary  are  then  combined  to  create  an  internal 

boundary  strip.  This  strip  is  then  extruded  upwards  by  the  specified  footpath  height 

parameter. The boundary cycle is finally toured and the length of each edge is measured. An 

accumulated length value is stored in each vertex and transformed to form the UV texture 

coordinates. These texture coordinates ensure that the footpath textures are tiled correctly.

4.4.1.1 Straight Skeleton Inset

The boundary consists of small segments interpolated from the primary road network and a 

diverse mix of patterns generated in the secondary road network. For this reason a basic inset 

operation  can  frequently  fail.  This  failure  results  in  undesirable  artefacts  in  the  inset 

boundary. Hence, an algorithm was used that can take the potential problems into account. 

The technique used is that of the Straight Skeleton, a concept first proposed by Aichholzer et 

al. in the paper titled “A Novel Type of Skeleton for Polygons” [Aichholzer 1995].

Figure 52: Straight Skeleton [Aichholzer 1995]

A straight skeleton is defined as the union of pieces of the angular bisectors traced out by the 

polygon  vertices  during  the  shrinking  process  [Aichholzer  1995].  During  the  shrinking 

process two types of events can occur:

● An  Edge Event,  occurs when an edge shrinks to zero and the neighbouring edges 

become adjacent. An example of this event is circled in green in Figure 52. 
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● A Split Event, occurs when an edge is split by a reflex vertex, thus dividing the whole 

polygon into two. An example of this event is circled in red in Figure 52.

Following the description of the concepts by Aichholzer  et  al.,  an implementation of the 

algorithm was later  provided by Felkel  and Obdrzalek when they published the “Straight 

Skeleton Implementation” in 1998 [Felkel and  Obdrzalek 1998]. This is the implementation 

that our algorithm is based upon. The algorithm obtains the Straight Skeleton of any polygon 

in O(nm + n log(n)) time, where  n is the total number of vertices, and m is the number of 

reflex vertices. This algorithm works by storing the polygon in a data structure called a Set of  

circular Lists of Active Vertices, or  SLAV for short. This data structure is used to store the 

polygon vertices and the Straight Skeleton structure. Events are then processed in the order 

they are encountered.

There  are  two  major  differences  in  our  implementation  of  the  inset  algorithm  and  the 

algorithm described by Felkel et al. Firstly the inset algorithm does not generate a complete 

Straight Skeleton. Instead, the algorithm generates a partial  skeleton by tracking the inset 

progress  and  detecting  just  enough  events  to  inset  the  polygon  by  the  required  amount. 

Secondly the algorithm operates in O(n log(n)) time. This is achieved, not by improving the 

complete algorithm, but by customising the algorithm to our application and ignoring  Split  

Events. During testing it was found that the Split Event rarely occurs and so can be removed 

without causing significant problems. This approach has the added benefits of simplicity and 

performance but has a dangerous side effect of creating potentially invalid regions. However, 

efficient error checking is employed in the later stages to help correct any errors that may 

occur during the inset process. The result is an inset algorithm that is balanced by creating 

few errors yet remaining computationally efficient.

4.4.2 Lot Subdivision

The lot subdivision process operates on the region boundary defined in each city block. A 

subdivision algorithm is applied which is based on that described by Parish et al. [2001]. 

Also, a number of extra features and optimisations have been implemented to extend this 

technique. These features include: 

● a more even and accurate method of dividing lots

● an optimisation to orientate lots perpendicular to their access roads

● the ability to process both concave and convex regions
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● the addition of individual lot width and lot depth parameters

The lot subdivision process operates by measuring the regions and dividing them recursively 

until  all  of  the regions  are  of a size approaching  the values  specified  in the cell  control 

parameters. Two cell control parameters, lot depth and lot width, along with deviation values 

are used to control the subdivision process. The lot subdivision algorithm recursively splits 

each region into two or more sub-regions using a split line to define each split operation. 

These split lines are calculated by obtaining a perpendicular from a point near the middle of 

the longest side of each region.  Deviation is used to introduce noise into the subdivision 

process. This application of noise results in a more natural  lot  distribution.  The deviation 

amount  can be specified  in  the cell  control  parameters  and a range of  variation  between 

regular and randomised lot sizes is possible. Also, throughout the subdivision process road 

access information is maintained in the region data structures. This information is used to 

determine if regions have direct  access to the road network. Those regions without direct 

access to the road network are not considered suitable  for building development,  and are 

discarded, or used for green space. 

Figure 53: Illustration of the Lot Subdivision Algorithm 

Shown above in Figure 53 is an example of the lot subdivision algorithm dividing a regular 

convex polygon typical of an inner city block. The red points indicate the split points used to 

define the split line shown as dashed lines. The light grey regions shown in the last stage 
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represent the lots that do not have direct road access and are excluded. For more detail on the 

the lot subdivision algorithm, a pseudo-code description is shown below in Figure 54. 

subdivideLots(blockRegion)
regionQueue.push(blockRegion)

while(regionQueue is not empty)
region = regionQueue.front()

// calc the longest road edge and split size
longestEdge = region.getLongestRoad()
if(longestSide.length < lotWidth)

// calc the longest non-road edge and split size
longestEdge = region.getLongestNonRoad()
if(longestSide.length < lotDepth)

// if lot is small enough, add completed region
outputRegions.add(region)
regionQueue.pop()
continue

else
splitSize = lotDepth

else
splitSize = lotWidth

// calculate the split points
sp1 = calcSplitPoint(longestEdge, splitSize, lotDeviance)
sp2 = sp1 + longestEdge.perpendicular()

// split and process the new regions
newRegions = SplitRegion(region, sp1, sp2)
regionQueue.pop();
foreach(Region r in newRegions)

if(r.hasRoadAccess()) 
regionQueue.push(r) // add to processing queue

else
delete r // discard region

return outputRegions

Figure 54: Lot Subdivision Algorithm pseudo-code

4.4.2.1 Even and Accurate Lot Subdivision

Using a binary split operation limits the accuracy to the nearest power of two. By taking the 

target size into account we can offset the division point for more even and accurate divisions 

for odd sized lots. The function called to calculate the deviated mid point for the longest edge 

is of key importance to the generation of evenly and accurately sized lots. Although a lot 

deviance parameter can be specified in the cell control parameters, the ability of the original 
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lot subdivision algorithm to deliver evenly sized lots is restricted. When testing the initial 

version  of  the  lot  subdivision  we  quickly  found  that  by  using  a  deviated  midpoint  the 

accuracy of the lot subdivision was limited to the nearest power of two.

Figure 55: Split Point Calculation

In the example shown above the region is 60 units wide and 20 units deep. The desired lot 

width and lot depth is 20 units and the deviance is 0. The desired result is obvious, three lots 

should be obtained. However, if the midpoint is used as the first split point in the region, four 

lots, not three lots will be returned. To solve this problem we take the measurement of the 

longest side and determine the number of splits that may be required. Using this number we 

can then select the middle-most fraction for an accurate split. Although it is not evident in the 

example above, it is very important that the middle-most split fraction is used, otherwise thin 

slices  are  cut  from  large  regions  and  lot  distribution  is  compromised.  This  feature  is 

necessary for cells which specify low lot deviance values and enables accurate and evenly 

sized lots to be obtained. For cells with high deviance values the application of noise is not 

negatively affected by the implementation of this feature. Shown below is a short snippet of 

pseudo-code that demonstrates how this feature can be implemented.

calcSplitPoint(longestEdge, splitSize, lotDeviance)

factor = Round(longestEdge.length / splitSize)
fraction = 1/factor
midPosition = Round(factor/2) * fraction

// calculate longest edge vector src → dst
longestEdgeVec = longestEdge.dstPos() - longestEdge.srcPos()

return longestEdge.srcPos() + longestEdgeVec * 
(midPosition + (lotDeviance * (srandom() - 0.5) * fraction))

Figure 56: Lot Subdivision Algorithm pseudo-code
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4.4.2.2 Perpendicular Lot Orientation

Another modification was required to improve the orientation of lots obtained from irregular 

or complex regions. The original lot division algorithm worked fine for rectangular regions, 

however, when the algorithm was tested on suburban road networks the resulting lots were 

angular and irregular. To combat this and provide more realistic lots for suburban networks a 

modification was made to the lot division process in which division was prioritised along 

sides  with  road  access.  This  modification  can  be  seen  in  Figure  54 where  the  function 

getLongestRoad is invoked before the function getLongestNonRoad. As a result of this 

simple modification almost all lots are now oriented perpendicular to their access roads. This 

more closely reflects the conditions found in the real world and improves the quality and 

realism of lots in suburban regions without affecting other regions negatively.

4.4.2.3 Concave and Convex Lot Subdivision

The last and most important improvement to the lot subdivision algorithm is the removal of 

the  restriction  for  regions  to  be  convex.  By requiring  that  all  regions  be convex the  lot 

subdivision process is limited to operating on regular blocks, like those found in Manhattan. 

However,  most regions are not convex. Suburban,  industrial  or any district  with filament 

roads  can  not  be  processed  using  the  basic  subdivision  algorithm.  The  solution  was  to 

develop a more complex split algorithm capable of splitting both concave and convex regions 

into two or more subregions.

Regions  or  lots  are  represented  as  graphs  of  directed 

edges. These directed edge graphs are implemented in a 

circular linked list. Using this data structure each of the 

vertex  neighbours  are  easily  accessible  and  additional 

data  such  as  road  access  information  and  process 

variables can be attached to each edge.

The  intersections  between  the  boundary  edges  and  the 

split  line  are  calculated  in  two  stages:  The  first  stage 

determines  the  position  of  each  vertex  relative  to  the 

perpendicular of the split line using the same technique as 

described in section 4.2.3.3. In the second stage,  edges 

with a vertex on each side of the line, are deemed to have 
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an intersection present. The position of the intersections 

and their  relative locations along the split  line are then 

calculated and inserted into the regions circular list and 

also into a list for intersection vertices.

The  list  of  intersection  vertices  are  then  sorted  by  the 

their  relative  position  on  the  split  line.  Each  alternate 

edge  between  the  ordered  intersection  vertices  is 

considered  part  of  the  region  as  per  Jordans  Curve 

Theorem  (these  edges  are  marked  in  green  in  the 

illustration shown on the left). For each of these pairs a 

bridge function is invoked to modify the structure of the 

region into several constituent regions.

The bridge function creates  two additional  vertices  and 

two new edges for each intersection pair. It is important 

that the bridge function modifies the graph so that each of 

the original intersection edges is assigned to a different 

sub  region.  Finally  the  sub  regions  are  extracted  by 

cycling through the connected edges for each intersection 

edge.  Since  a  sub-region  may  contain  more  than  one 

intersection edge,  edges are  marked as visited to  avoid 

any duplication.

Figure 57: Region Split Algorithm

The original version of algorithm was developed using vectors and indices instead of the 

circular list.  However, there were performance implications, even though the size of each 

vector was determined in advance and the memory was allocated in advance, the resulting 

copy time for each region was still noticeable. After further research a useful description of 

an algorithm was found in Graphic Gems V  [Paeth et al.  1995]. This new revision of the 

algorithm, as shown in Figure 58, is based on the clipping algorithm described in chapter II.3 

of  Graphic Gems V. While the algorithm is not identical, important concepts including the 

bridge function and the circular list were instrumental in improving the performance of lot 

subdivision. On the next page a pseudo-code listing of the split region code is provided for 

those who may require more detail on the algorithms' operation.
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splitRegion(region, a, b)
ab = b - a
Lsq = ab.squaredLength()
foreach(edge in region)

edge.s = (-ac.z * ab.x + ac.x * ab.z) / Lsq

foreach(edge in region)
if((edge.s > 0 && edge.next().s <= 0)

|| (edge.s <= 0 && edge.next().s > 0))

cd = edge.dstPos() - edge.srcPos()
denom = (ab.x * cd.z) - (ab.z * cd.x)
ca = a - edge.srcPos()
r = ((ca.z * cd.x) - (ca.x * cd.z)) / denom  // loc on ab
s = ((ca.z * ab.x) - (ca.x * ab.z)) / denom  // loc on cd

if(edge.s == 0) // if split on src
intersectingEdge = curr

else if(edge.next().s == 0) // if split on dst
intersectingEdge = curr.next()

else
// intersection point calc using cd, splitline ab is flat
intersectingEdge = region.insert(edge,edge.srcPos()+(s*cd))

intersectingEdge.s = r
createdEdges.add(d)

// sort the created list by location on ab
sort(createdEdges, sortDirectedEdgeByS)

// mark edges as unvisited
foreach(edge in region) edge.s = 0 

// bridge intersection pairs
for(i=0; i<createdEdges.size(); i+=2)

DirectedEdge::bridge(created[i], created[i+1])

// finally extract the new regions
foreach(createdEdge in createdEdge)

edge = createdEdge
skipDuplicate = false
do

if (edge.s > 0)
skipDuplicate = true
break

edge.s = 1 // mark edge as visited
edge = edge.next() // advance to next edge

while(edge != createdEdge)
if(!skipDuplicate) outputRegions.add(new Region(createdEdge))

return outputRegions
Figure 58: Lot Subdivision Algorithm pseudo-code
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4.4.3 Building Construction 

Buildings are generated on the lots created by the lot subdivision process. Hints attached to 

each  neighbourhood  as  part  of  the  control  parameter  set advise  the  building  generation 

algorithm on what class of building to be generated and how it should be positioned on the 

lot. The actual building placement is achieved using a combination of polygon insetting and 

shape  fitting.  Finally  the  building  geometry  is  constructed  by  performing  an  extrude 

operation on the footprint and materials are applied to simulate additional geometric detail.

4.4.3.1 Building Footprints

Building generation  begins with the positioning of the building footprint  within each lot. 

Different strategies are applied to obtain the footprint based on the type of development that 

is  indicated  by the  cell  control  parameters.  The  footprints  are  calculated  using the inset 

algorithm  described  in  section  4.4.1.1.  Road  access  information  is  required  by  some 

development  types  to inset  the road access sides by a different amount  to the others. To 

implement this feature the Straight Skeleton Inset function has been extended to support a 

weighted  inset  routine,  sometimes  referred  to  as  a  Weighted  Straight  Skeleton or  Camp 

Skeleton. This extension is implemented by calculating the angle bisector taking edge weights 

into account.  In this case the optimisation applied by Felkel et  al.[Felkel and  Obdrzalek

1998] to limit the execution of the Split Event (see section 4.4.1.1 for a definition) test is no 

longer applicable. In a non-linear inset, used by the Suburban example below, a different set 

of vertices can cause a  Split Event and not just the reflex vertices. The illustration below 

shows the inset operations for a number of different building types.

Figure 59: Building Type Lot Insets

As shown in Figure 59,  the down-town type buildings attempt to make maximum use of lot 

space and apply zero inset while the suburban buildings retreat in from the road access sides 

and also from each other in order to make room for a garden area. The industrial buildings 
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retreat in from their boundaries to emulate the green space found in industrial estates. After 

the  inset  has  been  performed  the  industrial  building  footprints  and  down-town  building 

footprints  are finalized.  However, the suburban building does not use an irregular shaped 

footprint and instead attempts to fit a regular shape such as a rectangle inside the inset region. 

Figure 60: Building Type Lot Insets

This simple shape fitting algorithm operates by first selecting a primary road access side and 

obtaining a centre point. Two lines are then calculated parallel to the primary road edge and 

offset  from  the  centre  point.  Using  these  lines  intersection  tests  are  executed  and  the 

minimum distances between the intersections and the centre point are obtained. Using these 

minimum distance values a proportional rectangle is constructed as the final footprint.

4.4.3.2 Building Geometry

Once  the  footprint  has  been  calculated,  building  geometry  is  then  generated  by  simply 

extruding the footprint  upwards to produce a solid object.  The height of each building is 

determined from the building height parameter, an accompanying deviance parameter is used 

to add controlled noise to the building height values.

Figure 61: Primitive Building Geometry
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The  basic  building  shapes  that  are  generated  by  extruding  the  footprints  are  primitive. 

However,  these  shapes  can  then  be  used  as  a  starting  point  for  a  shape  grammar 

transformation or any other procedural building technique. In our implementation, we try to 

improve the level of detail and visual quality of the cityscape by applying advanced materials 

with shaders to simulate additional geometry.

4.4.3.3 Building Materials and Shaders

In  order  to  improve  the  appearance  of  basic  building  meshes,  materials  are  applied  that 

employ shaders to add more detail. One of the main advantages of this approach is that the 

shaders  can  utilize  the  graphics  hardware  and  not  the  main  processor  to  simulate  the 

additional  geometry.  Thus,  the  appearance  of  more  complex  meshes  is  provided  without 

incurring the processing time of generating and rendering the actual geometry.

Several techniques are available to simulate additional geometry, three examples are shown 

in Figure 62. The first technique is normal mapping, which is a standard technique frequently 

applied in computer graphics. It succeeds bump mapping by using a colour texture to define 

the normals instead of using a grey-scale texture to perturb the normals. The three colour 

components  in  the  texture  are  used  to  define  the  x,  y  and z  components  of  the  surface 

normals. These normals define the direction each surface is facing, and are then used by the 

lighting system to compute shading. The second technique shown in  Figure 62 is  parallax 

mapping [Kaneko 2001]. Parallax refers to the effect where the apparent position of an object 

changes with the observation point. This technique overcomes the flat appearance of normal 

mapping by displacing the texture coordinates to give an appearance of depth in the final 

rendered object. 

Figure 62: Three techniques to simulate additional geometry
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The third technique shown in Figure 62 is called relief mapping [Policarpo 2005], and this is 

the technique  applied to our buildings.  Relief  mapping overcomes the weaknesses of the 

other  techniques  by  providing  realistic  shading,  parallax  effects,  occlusion  and  self-

shadowing. Occlusion is the effect where an object is masked, hidden or occluded from view 

by an object that is closer to the observation point. An example of occlusion can be seen  in 

Figure 62 where the far side of the pyramid is occluded on the top side of the right most cube. 

Here the far side of the pyramid is not visible as it is hidden or occluded by the near sides. 

The effects of self-shadowing can also be seen on the front side of the same cube. Here the 

detailed objects on the face cast shadows across the face just if they were implemented with 

geometry. 

Figure 63: Relief Mapping: Height-map, Normal-map, Diffuse-map and Output

The textures  required to implement  relief  mapping are shown in  Figure 63 above.  Relief 

mapping uses a grey-scale texture, or the alpha value of a colour texture to define a height-

field in addition to using a colour texture for the normal map. The relief mapping technique 

defines  a  shader  to  compute  an efficient  ray to  height-field  intersection  algorithm which 

executes on the GPU [Policarpo 2005]. More details on this algorithm can be found in “Real-

Time Relief Mapping on Arbitrary Polygonal Surfaces”.

Each relief mapping texture set is used to define a building tile. These building tiles contain 

information  in  their  material  description  to  specify  the  input  textures  and  the  desired 

dimensions  for  their  application.  The  tiles  are  then  applied  to  the  building  geometry  by 

generating texture coordinates with a best fit algorithm. This algorithm aims to match the 

tiles  dimensions without splitting or dividing a tile unnecessarily.  By using this system a 

range of different sized geometric building units can be defined and applied to any building 

while scale and proportion are maintained. 
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The process used to create  the texture sets  for the building tiles is  discussed in  the next 

chapter, in section 5.6. A screen-shot of city buildings with a range of building geometry tiles 

can be viewed in the results  chapter.  To summarize,  this  approach provides a method to 

define  building  geometry  in  tile  form  and  the  application  of  this  technique  results  in 

significantly improved detail in the final rendered cityscapes.

4.5 Summary

In this chapter we have discussed the concepts and algorithms that have been applied in our 

design.  The three main  stages of city generation:  primary road networks,  secondary road 

networks  and  building  generation  have  been  outlined.  The  primary  road  network  stage 

described the adjacency list  data structure,  the adaptive roads and the sampling strategies 

available.  Secondary road network generation encompassed the extraction of cells  via the 

minimum cycle basis algorithm, a description of the growth algorithm and a detailed look at 

the snap algorithm which is  critical  to performance.  The final  stage,  building generation, 

explained the operation of the lot subdivision algorithm and outlined the improvements made. 

Finally the algorithm used to obtain building footprints was explained and the geometry tile 

system that is powered by the shaders of the building materials was described. In the next 

chapter  we show how these  concepts  and  algorithms  were  developed  into  an  interactive 

procedural city generation system, titled Citygen.
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Chapter 5
Citygen Implementation 

In this chapter we describe our implementation for the procedural city generation project. A 

solution  has  been  developed  in  the  form of  a  standalone  application  titled  Citygen.  We 

introduce the user interface and provide an outline of all  the major interface components 

describing their functionality and role in the system. Furthermore an explanation is included 

of how the application can be used, the tools that it  provides and how these tools can be 

applied to quickly and easily construct a cityscape. 

The application has been built from scratch using C++ and takes advantage of a number of 

key technologies to fulfil the design goals. Several libraries and standards help to create an 

accessible, interactive application that can achieve real-time city generation, and fit into the 

development pipeline of the graphics industry. In addition to fulfilling the design goals, the 

careful choice of libraries have provided added benefits  and these are also discussed. An 

outline into each of these libraries and standards is included alongside the reasoning for their 

selection. 

5.1 An Introduction to the Citygen UI

The Citygen application is designed for accessibility and ease of use. It provides a unified 

workspace  for  procedural  city  generation  and  the  user  interface  controls  are  integrated 

together  in  a  single  application  incorporating  a  built-in  game  engine  view.  Individual 

interface components such as the toolbars, property lists and game engine render view can be 

moved, docked or separated from the main window in a similar style to commercial graphics 

application or IDEs. The main components of the workspace are illustrated in Figure 64.
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Figure 64: Citygen User Interface

Menu and Toolbar

Citygen contains a Standard Toolbar, a  View Mode Toolbar, an Edit Mode Toolbar and an 

Edit  Tools  Toolbar. The  menu  has  a  copy of  the  toolbar  functions  with  the  addition  of 

infrequently  used  tools  such  as  Options and  Export.  The  Standard  Toolbar contains  the 

generic functions commonly found in most desktop applications: New File, Open File, Save 

and Help. The remaining toolbars contain application specific functions and their operation 

and behaviour is detailed in the next sections.

View Mode Toolbar

The View Mode Toolbar can be used to select what elements of the city are displayed in the 

Game Engine Render View. A number of views are available: 

● View Primary – displays only primary roads. 

● View Roads – displays primary roads and secondary roads.

● View All – displays primary roads, secondary road and buildings.

The view mode can be changed at any point in the generation process and is independent of 

the  edit  mode.  This  allows  the  user  to  see  how their  changes  affect  each  layer  of  city 
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generation. Figure 65, displayed below, illustrates the effect of different view modes in action 

on the Game Engine Render View.

Figure 65: View Modes from left to right: View Primary, View Roads and View All.

Edit Mode Toolbar

The Edit  Mode Toolbar is used to change the current edit  mode of the application.  Four 

distinct edit modes are available: View, Node, Road and Cell. By selecting a different edit 

mode the user changes the operational mode of the application. For example, selecting Node 

Edit displays the Node Edit Tools and the Node Property Inspector. The user can then select 

and modify nodes in the  Game Engine Render View.  Road Edit Mode and  Cell Edit Mode 

provide similar functionality for roads and cells. A more detailed description of the operation 

of individual edit modes is provided in sections 5.2, 5.3 and 5.4.

Property Inspector

The  property  inspector  is  used  to  view and  modify  the  properties  of  city  scene  objects. 

Properties  that  can  be  edited  include  basic  coordinates,  display  preferences  and  most 

importantly the control parameters for generation.

Output Log

The output log provides extra information targeted towards more technical users. This extra 

technical information contains specific details on the city model currently being generated. 

Some examples  of  this  information  are  the  format  of  the textures  loaded,  the generation 

times, and the polygon and vertex counts of the different city components.
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5.2 View Edit

This mode is used to change the view of the city presented to the user in the Game Engine  

Render View. The view system in Citygen follows the same design goals as the rest of the 

application  and  is  designed  to  be  accessible  and  easy  to  use.  The  camera  model  used 

replicates the functionality found in mainstream 3D authoring tools and should be familiar to 

any user with experience in computer graphics.

 

Figure 66: Camera Model and Cursor Bitmaps

● Translation operations are performed relative to the target plane so that the user can 

effectively grab and move the screen. Translation magnitude is accurately calculated 

to keep the object in focus aligned with the mouse cursor as the user drags the screen. 

The correct translation magnitude is calculated via a mouse ray plane intersection.

● Rotation operations are made around the target point. The user can rotate the camera 

horizontally and vertically at the same time, using a mouse drag action and relative 

screen coordinates to control the rotation.

● Zoom operations are activated using either a mouse drag action or the scroll wheel. 

The zoom magnitude is determined relative to the distance between the camera and 

target  point,  in  order  to  have  rapid  zooming  at  distance,  and fine-grained  control 

nearer.

Cursor bitmaps, shown in  Figure 66, were created using vector graphics in the Fireworks 

application and are similar in style to those found in mainstream authoring tools. The cursors 

are used in Citygen to indicate the current camera manipulation being performed.
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5.3 Node Edit

The  Citygen application  provides  a  user  interface  to  rapidly  construct  the  primary  road 

network using a simple and intuitive process. A point  and click system is employed that 

enables  users to quickly create  the series of nodes and adaptive  roads that  constitute  the 

primary road network.

Figure 67: Node Edit Workspace

Nodes are represented in the application by red control points which can be selected, moved, 

modified and deleted using the point-and-click interface. A label is assigned to each node 

with the instance count used as a default value, custom text can also be assigned by the user 

via the Property Inspector. Nodes are displayed according to their status: normal nodes are 

drawn in red, highlighted nodes are surrounded with a yellow disc and selected nodes are 

drawn in yellow.

Three node specific tools are provided in the toolbar:  Select Node,  Add Node and  Delete  

Node. To add a node to the system the user simply selects the Add Node tool and points and 

clicks on an area of the terrain and a node is then constructed and displayed at that point. If 

the user would like to modify the position of an existing node the user can activate the Select  

Node tool and then click on any node and simply drag it to the desired location to reposition 

it.  In  the  event  that  specific  and  exact  world  coordinates  are  required  for  a  node  the 

application can facilitate this process also. Using the node property inspector, displayed on 

the left in Figure 67, the user can specify the exact world coordinates by typing the desired 

position into the x and z properties of the property inspector. The y property is the height 

coordinate and is determined automatically by plotting the 2D coordinate to a point on the 

surface of the terrain. To delete a node, a similar point-and-click system is employed. The 

79



Chapter 5 Citygen Implementation 

user simply selects the Delete Node tool and points and clicks near an existing node on the 

terrain.

5.3.1 Add Node - Chain Tool

The add node tool contains an additional mode of operation that is designed to facilitate the 

construction of roads. This mode provides a method to add roads quickly using the least 

number of clicks possible. 

Figure 68: Chain Tool – Plough of roads in 9 clicks

The road construction mode of the Add Node tool is activated by clicking on an existing node 

with  the  Add  Node  tool  selected,  then  a  road  is  automatically  generated  and  displayed 

between the selected node and a proposed node, positioned underneath the mouse cursor. As 

the user moves the cursor around the screen they can preview this new road and choose to 

add it by simply pointing and clicking on the terrain. A new node is then added, along with a 

connecting road identical to the preview road that was displayed. To add further roads, this 

process does not have to be initiated again, as the selected node is advanced to the newly 

added node, allowing the user to create a long string of nodes all connected by roads. In 

addition, this tool is not limited to creating singular strings of nodes, but can also be used to 

create loops and connect to existing infrastructure. When connecting a road to existing nodes, 

the selected node is still advanced, but in this case it is advanced to the target node, and the 

user can continue to add a road per click on the terrain.  

5.3.2 Validity Checking

Validity checking is an important part of the Citygen system and is applied to maintain the 

validity of the road network graph and to assist  the user in the rapid construction of the 
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primary road network. Just like the secondary road generation, where the growth algorithms' 

actions are refined to create a valid road network, here the users actions are refined.

Road  network  graphs  are  planar  so  their  edges  cannot  overlap  and  all  road  to  road 

intersections require a node to model each and every junction. Citygen provides real-time 

validity checking, so as the user moves the cursor, or proposes a change to the network, their 

actions are refined in real-time by the validity checking mechanisms. This enables the user to 

see a live view of how their actions will effect the road graph and what modifications shall be 

made by the system to ensure the integrity of the road graph. For example, in the event that a 

user wishes to create a road that overlaps with another road, the system will automatically 

detect  the  intersection  event,  display  the  corrected  road  graph,  and  insert  a  node  in  the 

existing road at the offending intersection point upon commit. 

Figure 69: Validity Checking: Node Snap, Road Intersection and Road Snap. The red road 
illustrates the users proposed action and green road shows the corrected version.

In addition to maintaining the integrity of the road network, the validity checking algorithms 

assist the user in the rapid creation of nodes and roads by snapping automatically to existing 

infrastructure.  As  the  user  selects  nodes,  and  connects  nodes  with  roads,  the  cursor  will 

automatically snap to the closest existing node within a defined snap distance. With the aid of 

this technique users can select nodes and add roads without having to worry about the exact 

position of the cursor or without requiring precise selections. Also users can, with a single 

action, propose invalid or intersecting roads, view the corrected modifications in real-time 

and click to accept these as additions to the road network. 

5.4 Road Edit

The  Road  Tools  provide  a  means  to  add,  modify  and  delete  roads  in  the  primary  road 

network. Primary roads in Citygen are adaptive and change to fit the environment in which 

they are placed. The road Property Inspector provides access to the parameters that control 
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the adaptive road generation process and these can be modified with their effect viewable 

instantaneously.

Figure 70: Road Edit Workspace

Roads are rendered with textured geometry in Citygen and appear identically in the exported 

model that the application creates. Junction plates are constructed separately as part of the 

node object but are displayed in the road edit mode. A point-and-click interface is used again 

to select, modify, delete and add roads. Selected roads are indicated by being displayed in a 

shade of yellow.

Three road specific tools are displayed in the toolbar:  Select Road,  Add Road and  Delete  

Road. In order to create a new road the user selects the Add Road tool and clicks on a pair of 

nodes  a and b sequentially to create a new road from node a to node b. In the event that a 

road cannot be constructed, for instance if the road intersects with a number of other existing 

roads, the user is presented with a warning message that explains the reason why their desired 

road was not constructed. The Select Road tool functions by allowing the user to select any 

road with a single click and then the properties for that road are loaded and displayed in the 

road  Property Inspector dialogue. The  Delete Road tool provides a means for the user to 

delete individual roads from the road network graph. The operation of the tool is again very 

simple, to delete a road the user simply selects the Delete Road tool and clicks on the road to 

be deleted.

5.4.1 Adaptive Road Control Properties

The road Property Inspector displays the adaptive road generation properties for the currently 

selected road and also the default generation properties for new roads when a road is not 

selected.  The road  Property Inspector consist  of  7 properties in two categories,  Adaptive  
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Road  Parameters  and  Display  Options.  Figure  71 shows  the  road  property  inspector  in 

action. 

The  Adaptive  Road  Parameters category  lists  the  control 

parameters involved in the generation of adaptive roads. The 

Algorithm property provides  a  drop down list  to  select  the 

active  road generation  algorithm,  a  description  of  which is 

included in the previous chapter in section 4.2. The remaining 

properties  in  this  category  control  the  behaviour  of  the 

sampling  for  road  generation  and  specify  the  width  of  the 

road. Figure 72, which is displayed below, shows the effect of 

these control parameters on adaptive road generation.

Figure 72: Adaptive Road Control Parameters

The Display Options category allows the user to change the display of each road and how it 

is  rendered.  The  Segment Draw Size property directly effects  the smoothness  of the road 

geometry by defining the size of road segments to be interpolated from the road path curve. 

The last parameter,  View Plot Debug Info, can be used to enable a debug overlay for each 

road.  The debug overlay is illustrated in  Figure 72 and displays  the samples used by the 

adaptive road generation algorithm.

5.5 Cell Edit

In  Citygen, City Cells represent the neighbourhoods or districts of the city and are formed 

from the enclosed regions of the primary road network. Inside each City Cell the secondary 

road network is generated using a growth based algorithm. The Cell Edit mode provides an 

accessible  interface  in  which  the  user  can  simply  select  cells  and  view their  generation 

83

Figure 71: Road Property  
Inspector



Chapter 5 Citygen Implementation 

control parameters. Control parameters for both the secondary road generation and building 

construction are displayed in the Property Inspector.

Figure 73: Cell Edit Workspace

Cell Edit mode, in contrast to the other edit modes, does not provide a bar of specialized 

tools. Instead a single tool, the Cell Select tool, is all that is required. No “add cell” or “delete 

cell” tools are needed as cells are created via the construction of the primary road network 

whenever a region is enclosed. The boundaries of cells are automatically extracted from the 

primary  road  network  using  the  Minimum  Cycle  Basis  (MCB)  algorithm  described  in 

section 4.2.1. Cell Select operates in a similar fashion to the other tools with a point-and-click 

interface, if a user clicks within the boundary of a cell it will be selected. Selected cells are 

indicated by a yellow outline displayed around the cell boundary as shown in Figure 73. 

5.5.1 Cell Generation Properties

The cell Property Inspector provides an editable view of the generation control parameters. If 

no cells are currently selected, the Property Inspector displays the default property set, which 

can be modified to change the initial property values used for new cells. Upon selection of a 

cell, its parameters are read and loaded into the Property Inspector, where they can be viewed 

and modified. Three categories of properties are listed. Presets contains a property to load a 

predefined  set  of  generation  properties  that  encapsulate  a  distinctive  style  or  type  of 

neighbourhood. Generation Parameters controls the operation of the secondary road growth 

algorithm and building construction.  Lastly  Display Options provides a facility to display 

additional debug information.`
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Generation Parameters is the core category of the City Cell  

Property Inspector and contains all of the control parameters 

required for generation. The  Seed property is passed to the 

random generator in the generation process and ensures that 

the results are consistently reproducible. Five properties and 

their accompanying deviance values are used to control the 

secondary  road  growth  algorithm.  They  are  Segment Size, 

Degree,  Snap Size,  Road Width and  Connectivity.  Two 

properties are used to control Lot Subdivision:  Lot Size and 

Lot  Deviance.  Three  properties  govern  the  construction  of 

buildings:  Building Height,  Building Deviance and Building  

Hint.  Any  modification  made  to  the  control  parameters 

updates the  Game Engine Render View in real-time giving 

the user an element of close control over the generation process. A detailed outline of the 

function and effect of these parameters is documented in the previous chapter. 

The  Display Options category of the cell property inspector 

contains  a single property to enable a debug overlay.  This 

debug  overlay  displays  additional  generation  information 

such as block boundaries, lot boundaries and lot subdivision 

lines. The display of these lines can be useful for gaining an 

insight into the operation of the lot subdivision algorithm and 

can  help  the  user  obtain  their  desired  effect  from  the 

generation process.

The  Presets category contains the  Load Preset property that allows the user to load a pre-

defined set  of values into the generation parameters with one click.  These presets  are an 

added convenience for the user and can act as a starting point or template for the generation 

of a number of styles of secondary road networks and different types of neighbourhoods. 

Once the parameters have been loaded they can be modified and tailored to fit  the users 

specific requirements. It is also important to note that each  Preset does not output a single 

map,  but  is  seeded  and  has  232 combinations  like  every  other  parameter  set.  Figure  76 

displays  three  distinct  presets,  each  with  their  parameter  sets  and  an  accompanying 

screenshot.

85

Figure 74: Cell Property  
Inspector

Figure 75: Cell Debug View



Chapter 5 Citygen Implementation 

Manhattan
Segment Size: 5 ± 20%
Degree: 4 ± 1%
Snap Size: 2.4 ± 10%
Road Width: 0.45
Connectivity: 1
Building Height: 1.7 ± 70%
Lot Size: 0.7 ± 40%

Suburbia
Segment Size: 2.4 ± 30%
Degree: 18 ± 60%
Snap Size: 2 ± 10%
Road Width: 0.2
Connectivity: 0.05
Building Height: 0.3 ± 10%
Lot Size: 0.5 ± 50%

Industrial
Segment Size: 3 ± 10%
Degree: 4 ± 1%
Snap Size: 2 ± 10%
Road Width: 0.3
Connectivity: 0.05
Building Height: 0.6 ± 30%
Lot Size: 1.2 ± 60%

Figure 76: Preset Examples
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5.6 Building Tiles

The  building  tiles  define  the  material  which  is  used  to  simulate  additional  geometry  on 

building meshes.  In this section we will show how the building tiles are implemented and 

provide a short outline of the steps required to build a tile. Each title consists of a height map, 

a normal map, a diffuse colour map and a material description. 

The first step is to obtain a photo of the building that we wish to model. In order to create 

good textures for the building it is important that the photo is taken as straight-on as possible. 

The next step is to model the building geometry. One approach is to create a height map by 

shading the areas of the photo in shades of grey that correspond to the displacement of each 

area. However, I found that this approach is error prone and it is more reliable to apply the 

image as a projective texture and then model the building using a 3D authoring tool.

Figure 77: Building Tile Authoring

After modelling we have a complete geometric mesh of the building. The vertices can then be 

tweaked so that the façade angles are limited to 80 degrees, this avoid artefacts occurring. 

Finally  the  building  side  can  be  exported  from  3DMax  using  the  plug-in  provided  by 

Policarpo et al.  [Policarpo 2005]. The texture that is produced contains both the height and 

normal map. This exported texture is included with the diffuse texture in a material script 
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which specifies the desired dimensions of the tile and completes our definition of the building 

tile. These tiles are then applied to the buildings to achieve significantly improved detail.

5.7 Integrated Game Engine: OGRE

Citygen includes an integrated game engine view within the application so that all cities can 

be  generated in a WYSIWYG environment. OGRE [OGRE 2007] was selected for use in 

Citygen  because  of  its  clean  design  and  comprehensive  graphics  feature-set  which  is 

comparable to even the most recent commercial game engines. It is frequently used in the 

education and research sectors as the engine of choice for rapidly developing 3D applications. 

OGRE features of particular relevance to Citygen include:

● Efficient and versatile rendering engine with OpenGL support.

● Powerful material system that defines materials outside of code and supports multi-

texturing, multi-pass blending, vertex and fragment programs.

● Numerous  mesh  data  formats  accepted,  vertex  buffers,  index  buffers,  vertex 

declarations and buffer mappings.

● Flexible scene management with the option of custom scene managers for complete 

control over scene organisation

● Clean object-oriented design, well-documented API and an active community.

● Cross-platform: Windows, Linux & OS X.

OGRE  is  officially  defined  as  a  rendering  engine  (Object-oriented  Graphic  Rendering 

Engine) and not a game engine. However, game engine components not found in the standard 

OGRE package can be easily integrated into the system using a series of add-ons or plug-ins. 

Examples of available add-on components include audio, control,  scripting and physics to 

name but a few. OGRE is built on a well tested and mature code-base and has been applied in 

a number of commercial game titles.

Figure 78: OGRE game screenshots: Ankh, Building World & Pacific Storm
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5.8 Graph Structures: BGL (Boost Graph Library)

A number of graphs are employed within the Citygen application to store road network data 

and perform graph algorithms to extract enclosed regions, adjacency information and graph 

traits.  The  Boost  Graph  Library[Boost  2007] is  used  to  serve  as  a  standardized  generic 

interface  for  traversing  the   road  network  graphs  and  is  independent  of  the  graph  data 

structures used. Hence the algorithms that have been developed as part of Citygen can be 

applied to any graph that implements the standard BGL interface. 

In addition to providing a standardised interface for graph traversal the BGL library is also 

used in Citygen because it implements several types of graph data structures in efficient and 

well-tested  code.  The  main  graph  data  structure  used  by  the  Citygen  application  is  the 

adjacency  list  model.  This  template  can  be  specialised  further  by  specifying  the  STL 

container components used for both edges and vertices. In the case of Citygen road networks: 

● Vertices are stored in the  <list> container to ensure efficient iterator access and 

quick insertion/deletion at the cost of some additional storage space. 

● Edges in the road network graph are undirected and are stored in the <set> container 

so  that  parallel  or  duplicate  edges  can  be  excluded  with  little  overhead  and  the 

consistency of the road network graph can be maintained.

The RoadGraph class models road networks in the Citygen application and defines a simple 

API to modify and perform algorithms on the network. Several  RoadGraph instances are 

used  in  the  application:  the  primary  high-level  graph,  the  primary  low-level  graph  and 

additionally a graph is used for each cell. Each visual entity, which is an item displayed in the 

world, such as nodes, roads, cells, buildings etc., is associated with one or more graphs. The 

associations  are  structured so that  each  entity  can use its  private  member  data  to  access 

neighbours and related objects in the city scene. For example: it is the role of nodes to create 

junction plates and for this to be achieved each node must access its parent graph and extract 

the connected roads and the position of adjacent nodes. After the construction of junctions, 

roads must access their source and target nodes to obtain the correct coordinates to join to the 

junction  plate.  Numerous  relationships  are  modelled  in  the  Citygen  application  and  the 

RoadGraph is used to provide relationship information for all entities.
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5.9 GUI Platform: wxWidgets

Citygen  is  designed  from the  ground  up  to  be  a  portable  application  and  support  users 

running  different  platforms  and  operating  systems  such  as  Windows,  Linux  and  OS  X. 

Several user interface libraries exist to enable cross platform development, the wxWidgets 

[wxWidgets 2007] library was chosen because of a number of distinct advantages it provides:

● Native look and feel: wxWidgets creates user interfaces that perfectly match the look 

and feel of the host operating system by utilizing the native APIs.

● Comprehensive GUI widgets:  wxWidgets  contains  basic  widgets  such as  menus, 

toolbars, buttons and sliders but also provides advanced controls like Property Grids.

● Advanced features: customisable workspaces are an example of an advanced feature 

that can be supported easily with little effort using the wxWidgets library.

Cross-platform user interface libraries generally operate by emulating the display of interface 

components, resulting in applications that appear out-of-place and inconsistent with the look 

of  the  host  operating  system.  wxWidgets  is  different  in  that  its  applications  are  always 

consistent with the look and feel of their host operating system. This is accomplished by not 

emulating the user interface components within the library but instead translating the API 

calls to use the native user interface libraries. wxWidgets provides a single API that acts as a 

thin  layer  of  abstraction  over  the  native  APIs.  In  practice  this  means  that  a  wxWidgets 

application running on Windows uses the Win32 API, on Linux uses the GTK+ API and on 

OS X uses the Cocoa API. By using wxWidgets cross-platform applications can be developed 

without expert knowledge of any specific platform and a single unified code base can be used 

for all platforms.

Figure 79: wxWidgets Native Look and Feel: Windows, Linux & OS X
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5.10 Accessible Export: COLLADA

The main goal of the procedural city generation project was to create a tool that could help 

developers  and  artists  working  on  computer  graphics  projects  create  large  urban 

environments. In order to accomplish this goal it was important that the Citygen application 

could fit into the development pipelines used in the computer graphics industry. A wide range 

of digital content creation tools are used within the industry and it is not feasible or practical 

to provide a plug-in, or export file formats, for each tool. For this reason a unified exchange 

format was selected that could be read by all tools. The COLLADA(COLLAborative Design 

Activity) [COLLADA 2007] specification was chosen as the format to achieve this. 

COLLADA defines an XML database schema that enables 3-D authoring applications to  

freely exchange digital assets without loss of information, enabling multiple software  

packages to be combined into extremely powerful tool chains. [COLLADA 2007]

COLLADA is an XML format original devised by Sony Computer Entertainment as a digital 

asset  exchange format.  Since then a number of major  graphics developers such as Alias, 

Discreet and SoftImage have joined the consortium to extend and refine the specifications 

adding support for advanced materials and physics. The COLLADA schema, now at  revision 

1.4.1, is well supported by most major graphics tools and game engines including 3DS Max, 

Maya,  Blender,  SoftImage  XSI,  Deep  Exploration  and  the  Unreal  Engine  3.0.  Citygen 

provides complete COLLADA export for generated city models and supports the export of all 

geometry, materials and textures.

5.11 Summary

In  this  chapter  we  have  described  our  implementation  for  interactive  procedural  city 

generation.  The  user  interface  was  introduced  and  an  outline  of  the  major  interface 

components was provided. We have shown how the tools in Citygen can be used to create the 

constituent components of a city-scape. Also, information on the technologies used in the 

application were documented, along with the reasons for their selection. In the next chapter, 

we display the results of the system. This encompasses: studying the cityscapes generated, 

analysing the performance, and determining the accessibility of the generated models.
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Chapter 6
City Generation Results

In this chapter we analyse the results of our procedural city generation system. The primary 

road editing facility is demonstrated by recreating predominant city patterns from real-world 

cities.  The  adaptive  road  system  is  then  illustrated  showing  the  construction  of  several 

common road types, each of which are mapped to the terrain. Next, the distinctive patterns of 

the  secondary  road  networks  are  illustrated  with  samples,  results  and  the  associated 

generation parameters. Then, the lot subdivision and building tile results are displayed. The 

overall performance of the system is then analysed as we break down the computation times 

into stage times, comparing the performance with and without optimisations. Following that, 

we gather some statistics on the 3D authoring tools used in the graphics industry and estimate 

the percentage of users that can fit Citygen into their work-flow. Finally, we show a selection 

of screen-shots of generated cities. We begin with the primary road editing facility.

6.1 Primary Road Network

In  Citygen,  the construction of the primary road network is facilitated using the interactive 

graph editor, thus enabling users to incorporate any number of high level patterns into their 

cities.  The  primary  road  network  is  critical  to  determining  city  structure  and  plays  an 

important role in influencing our impression of city character. Previously, we discussed  in 

Chapter 3 how roads correspond to Paths and Edges, and how these roads form the defining 

boundaries  for  each  neighbourhood or  district.  We also  discussed how the  primary  road 

network affects our perception of the city, and in particular how these road networks define 

the predominant patterns that we use to identify distinctive city areas. The examples we used 

to illustrate this point were maps of the concentric ring roads that loop around the city centre 
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of Milan and the radial spokes surrounding the the Arc de Triomphe in Paris. We can now 

revisit these examples and see how the user can specify the key characteristics of a cityscape 

by recreating these patterns in Citygen. 

Milan – Concentric Rings Paris – Radial Spokes
Figure 80: Predominant Pattern in Existing Cities (Satellite)

Citygen is designed to provide the user with interactive control over road generation so input 

data  is  not required.  However,  satellite  images  or road maps can be useful  as a  form of 

reference to observe and select desirable patterns, which can then be incorporated into our 

generated cities. The following images, shown in  Figure 81 and  Figure 82, illustrate how 

these patterns can be accurately reproduced in procedural cities.

Figure 81: Milan Primary Network in Citygen
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Figure  81 illustrates  the  concentric  ring  road  pattern  of  Milan  applied  to  an  area  of 

approximately 25Km2.  Even though the  secondary road network  is  significantly  different 

from the original,  the cityscape can still  be easily recognised as that of Milan, due to the 

predominance of the same high level patterns in the primary road network.

Figure 82: Paris Primary Network in Citygen

Figure 82 shows the radial spoke pattern of Paris applied to a much smaller area of around 

1.5Km2.  Again the pattern is clearly identifiable, and shows how the patterns of the primary 

road network have a strong influence on the perceived character of a city.

By  recreating  familiar  patterns  from  established  cities  we  have  demonstrated  that  the 

interactive  editor  is  capable  of  creating  accurate  and  distinct  patterns.  The  primary  road 

network has been identified as the most predominant and recognisable feature of a cityscape. 

Using our system, any number of high level patterns can be mixed and matched, applied to 

the primary road graph and incorporated into the final cityscape. In the next section we look 

at adaptive roads, a technique which helps the user rapidly build the primary road network. 
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6.2 Adaptive Primary Roads

Adaptive roads form an important part of our procedural generation system. The path that 

roads  follow  is  rarely  an  exact  straight  line.  Roads  in  the  real  world  are  subject  to 

environmental constraints and these constraints affect the route each road takes. For an author 

to create realistic roads: the constraints of the environment must be taken into consideration, 

the effect  of each constraint  must  be evaluated  and a suitable  path for the road must  be 

plotted. With regard to city generation applications this would mean that each road would 

need to be manually planned and plotted, therefore making the construction of roads a time 

consuming task. For this reason the adaptive roads system was developed to enable the rapid 

construction of the primary road network.

Adaptive  roads  react  to  same  stimulus  as  real  roads  and  adapt  to  fit  the  surrounding 

environment.  Roads  are  plotted  to  the  contours  of  the terrain  and are  controlled  using a 

concise  set  of  parameters  and  a  number  of  strategies.  The  adaptive  roads  are  generated 

instantly and the route can be previewed in real-time as the user moves the cursor. Effective 

parametrization is achieved which results in road control parameters that directly relate to the 

road properties. Two key parameters are deviation and sample size. The deviation parameter 

affects  the  roads  range  of  movement  and  the  sample  size  parameter  affects  the  roads 

granularity  of  movement.  By  simply  varying these  two  parameters  we  can  capture  the 

behaviour of a wide range of roads and use the obtained values to recreate similar roads in 

our generated cities. 

Figure 83: Major Road : Sample Size 640m, Sample Deviance 15º
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Major roads such as motorways or highways are designed for high speed transit and as a 

result of this have no sharp corners or tight turns. Motorways can be recreated in Citygen by 

using a high sample size value with low deviance, the interpolation system employed in the 

application results in a road with smooth and gentle curves.

Figure 84: Primary Road : Sample Size 260m, Sample Deviance 25º

Primary  roads  that  encounter  uneven terrain  must  navigate  a  smooth  path  through while 

maintaining  minimal  elevation  changes.  Figure  84 demonstrates  how a road  of  this  type 

follows the terrain with substantially more curvature than the motorway using a moderate 

sample size  and lenient or high deviance value.

Figure 85: Inner City Road : Sample Size 90m, Sample Deviance 22º

Inner city roads do not have to cope with high speed traffic and as a result  can meander 

moderately to weave through the city. The direction of the road can change quite quickly due 

to the overlapping transport paths and frequent intersections. To abstract the behaviour of 
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inner city roads a low sample size value is used and a moderate to low deviation value.  

For many inner city routes, especially in planned cities, these is little or no deviation present.

In this section we have illustrated how a range of road types can be automatically generated 

using the adaptive road system. The road sampling and plotting algorithms ensure that roads 

react to the surrounding terrain and fit into the environment. Road networks can be created 

quickly  and easily.  A flexible  generation  algorithm means  a  range  of  road types  can  be 

created. Effective parametrisation enables the user to accurately match the road requirements. 

In the next section we will look at generation of the secondary road network.

6.3 Secondary Road Growth

In Citygen, secondary road generation operates on the regions enclosed by the primary road 

network.  The  secondary  roads  perform  the  job  of  servicing  the  enclosed  land  area  by 

providing access to and from the primary road network. Each enclosed region represents a 

neighbourhood or district of the city,  and each can display a distinct style and character. A 

growth algorithm is employed to construct the road segments inside each cell. This forms the 

secondary road network. A parameter set is defined for each cell to control the generation 

process and thus the style of output generated. We will now take a selection of secondary 

road patterns and illustrate how they can be generated using the Citygen application.

Figure 86: Manhattan (Grid) Street Pattern

The Manhattan pattern is formed from a grid of streets and is the most simple pattern to 

recreate.  To create a grid pattern a degree value of four is specified with minimal degree 

deviation  and  segment  deviation  values.  The  road  segment  size  and aspect  ratio  can  be 

customised to modify the block size and block aspect for each instance. The aspect parameter 

allows directional bias to be implemented without affecting the generation of other patterns. 
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Figure 87: Industrial Street Pattern

The industrial zones are not as highly connected as the grid networks and function to provide 

efficient road access to the industrial buildings. Through traffic is not a goal of these areas, 

but is enabled since for industrial areas it is important to have easy access to the primary road 

network.  For  these  reasons  a  much  lower  connectivity  value  is  used  in  the  generation 

parameters. Higher deviance values for segment length and junction degree are applied to add 

some noise into the resulting patterns. A large segment size is used to facilitate the large 

block area required by industrial buildings.

Figure 88: Suburban Street Pattern

Suburban areas use tree like road networks with almost all roads terminating at dead ends. 

Although  the  planned  layout  of  suburban  areas  is  difficult  for  the  growth  algorithm  to 

emulate the general structure can be recreated accurately. The most significant parameters to 

set  when creating suburban districts  are degree deviance,  snap size and connectivity.  The 

connectivity  of  a  suburban  area  is  low  by  design,  traffic  through  the  neighbourhood  is 

discouraged since these areas are often residential. Degree deviance is set to a relatively high 

value to enable the road growth to meander throughout the neighbourhood. A high snap size 

value is also required to ensure even road distribution and to contain untidy growth. 
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In this section we have illustrated how a range of neighbourhood styles can be generated 

using the road growth algorithm. The influential parameters that define each style type were 

outlined, and the results of the secondary road generation were shown side by side with real 

world examples. The results show that the road growth algorithm enables the user to generate 

a wide range of road networks. Also, real-world road networks can be matched by similar 

procedural networks using only a few specific parameters. 

6.4 Building Generation

Building generation operates on the enclosed land areas of the secondary road network. The 

lot subdivision process divides these areas into lots that are suitable for building construction. 

Once the lots have been identified the construction of buildings can begin. Basic buildings 

are constructed by extruding the building footprints upwards. Building tiles, which simulate 

detailed geometry by using relief mapping, are then applied to the final mesh. We first look at 

the results of the improved lot subdivision algorithm and assess the effect of our extensions.

Figure 89: Manhattan Lot Subdivision – Lots Displayed in Debug View

The original lot subdivision technique described by Parish and Müller [2001] worked well on 

regular  grid-like  road  networks  similar  to  those  found  in  Manhattan.  However,  the 

implementation of the algorithm in Citygen differs  from the original  in that  it  contains a 

number  of  extensions.  These  extensions  include:  more  even  and  accurate  method  of  lot 
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division,  the prioritisation of division along road access sides,  the ability to process both 

concave and convex regions and the addition of individual lot width and depth parameters. 

Even though these changes alter the behaviour of the process, we found that the generation of 

lots in regular grid networks like Manhattan was not adversely affected. In fact, the lot width 

and depth parameters were beneficial in creating lots which match those found in Manhattan.

The motivation for the extensions was to extend the application of the lot division algorithm 

to a wider range of road networks. Networks like the suburban type, shown below in Figure

90,  are  significantly  different  from  the  regular  grid-like  networks.  Here,  the  suburban 

generation  process  can  frequently  cause  irregular,  angular  and  concave  regions.  The  lot 

subdivision  algorithm needs  to  accommodate  these  concave  regions  and generate  regular 

rectangular  lots from irregular input. Prioritising the division along road access sides and 

supporting concave regions are essential to the success of the algorithm. The extensions to lot 

subdivision result in a substantial reduction of irregular lots and provide a feasible method of 

obtaining lots from suburban and other irregular road networks.

Figure 90: Suburban Lot Subdivision – Lots Displayed in Debug View

We now look at the results of the building tiles. After the lot subdivision process is complete 

the  building  footprints  are  calculated  and  basic  geometric  primitives  are  extruded.  The 

resulting geometry is then textured with building tiles which simulate additional geometry to 

provide more realism and detail. Shown below in Figure 91, is a selection of building tiles 
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applied  to  basic  cuboid  geometry.  The  top  row shows the  building  with  relief  mapping 

enabled and the bottom row shows the buildings without relief mapping enabled.

Figure 91: A selection of Building Tiles

Looking at  the images above, the individual  benefits  that  relief  mapping provides can be 

observed. Namely, the added depth, parallax, occlusion and shadowing. Even though the flat 

textures contain some emphasised shading the relief mapping technique is distinctly superior 

and  provides  a  higher  level  of  detail  and  realism.  In  this  section  we have  discussed  the 

effectiveness of the lot subdivision extensions and shown the benefits of relief mapping on 

building  tiles.  In  the next  section  we outline  the general  performance  of  our  system and 

discuss the effect of the algorithms and optimisations on  performance.
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6.5 Performance

Performance is an important factor in our city generation system. Interactive control is one of 

our main objectives and in order to provide this feature we aimed to generate and render the 

city at  interactive frame rates. This goal has been achieved,  with the average city cell  or 

neighbourhood now requiring only 60ms to generate and render. This means that the user can 

modify a city cell and view the results instantly. The generation of a complete city requires a 

little more time, around 1.6 seconds to create a test city of area 16Km2 with 15,000 roads and 

57,000  buildings.  In  this  section  we  show  the  effects  of  the  optimisations  on  the  city 

generation times and briefly describe the most influential cases.

A performance summary of Citygen can be viewed in the table below. The  generation times 

for each stage, with and without optimisations, are listed for comparison. The effects of the 

most influential optimisations are marked with a key, this character key points to a specific 

note for detail on each optimisation (see the captions below the table). 

Generation Stage Standard Execution Time Optimised Execution Time

Primary Junctions 43.6ms 18.8ms†

Primary Roads 175ms 22ms†

Secondary Road Generation 771.8ms 149.8ms*

Lot and Building Generation 2050.7ms 415.6ms‡

Geometry Mesh Build 4468.6ms 1009.2ms†

Total 7509.7ms 1615.4ms†*‡

Figure 92: Performance Table: Samples averaged from a test run of five executed on Intel  
Core Duo 2.33GHz with an ATI FireGL V5200 (similar to X1600). 

Optimisation Keys: * Snap Algorithm Optimisations, ‡ Efficient Split Algorithm and † Inline  
Tangent Vector Calculations.

The Secondary Road Generation stage employs the snap algorithm extensively. However, the 

snap algorithm is an expensive operation and a number of optimisations were developed to 

improve its performance, a description of these optimisations can be found in section 4.3.3. 

In  Figure 92, we can see the effect of these optimisations on Secondary Road Generation. 
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Here a five fold increase in performance over the standard snap algorithm can be observed 

when  using  the  optimised  snap  algorithm.  Clearly  this  performance  benefit  justifies  the 

development and application of these the snap algorithm optimisations.

The Lot and Building Generation stage frequently calls the split algorithm. This algorithm  is 

critical to the efficiency of lot subdivision. The operation of this algorithm is described in 

section 4.4.2.  Improvements  to  the algorithm were made so that  less memory allocations 

occur.  This  was  achieved  by  using  circular  list  structures  in  place  of  STL vectors.  The 

performance increase that occurred with this optimisation was significant,  the system can 

now generate lots and buildings at a rate four times faster than that previously experienced.

Tangent  Vector  Calculations  are  computed  for every piece  of geometry constructed.  The 

tangent vectors are required by almost all of the advanced materials including relief mapping. 

The  OGRE game engine,  used in  Citygen,  supports  the  automated  generation  of  tangent 

vectors. However, shared vertices were not supported, and as a result the entire geometry 

mesh needed to be relocated and re-indexed in order to generate the tangent vectors. This is a 

costly  operation  and  should  be  avoided  if  at  all  possible.  The  solution  used  was  to  the 

calculate the tangent vectors in-line as the faces are added to the mesh, thus avoiding the cost 

of relocation  and re-indexing.  This  optimisation resulted in improved performance  across 

several stages.

In this section we have shown the effects of our optimisations on overall city generation and 

on the individual generation stages. We have demonstrated that the optimisations developed 

provide a substantial  performance boost to the system and are an essential  component  to 

enabling the short generation times that make interactive control possible. In the next section 

we will look at the integration of Citygen into industry standard development processes.

6.6 Development Integration

One the goals outlined for Citygen was to ensure that the system could easily slot into the 

development pipeline of the computer graphics industry. In the Implementation Chapter the 

accessible interface suitable for novice users was described. A camera model and point-and-

click interface similar to those found in contemporary 3D authoring tools is used to make the 

application a familiar  environment  for those with experience in content  authoring.  In this 

section we analyse the usage data of 3D authoring tools and determine which tools can be 

used easily alongside the Citygen application.
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Figure 93: 3D Graphics Tools: Market Share

Figure 93 illustrates the market share of the leading 3D authoring tools. This data is acquired 

over a four year  period from the specifications of job positions in the computer  graphics 

industry. The table shown in Figure 94 displays which leading products support COLLADA, 

the  export  format  used  by  Citygen.  Using  these  two  sets  of  data  we  can  estimate  the 

percentage of workers in the computer graphics industry that can use Citygen without  any 

changes to their tool set or work practices. The result is a respectable 85%, the remaining 

15% of  workers  can  still  use  Citygen  but  may  require  an  additional  tool  such  as  Deep 

Exploration to convert the model data to their own native format.

Product Market Share Built-in Plug-in

Maya 42% -- ColladaMaya

3D Studio Max 17.9% -- ColladaMax

SoftImage XSI 12% Yes --

Lightwave 9.1% -- LWCOLLADA

Houdini 4.7% Yes --

Figure 94: 3D Graphics Tools: Market Share

6.7 Analysis

In order to evaluate the results of the procedural city generation system we revisit the critical 

framework that  was outlined in section 3.2.1.  The same set  of criteria  that  were used to 

evaluate existing city generation solutions are now applied to review the results of Citygen.

Realism  – Citygen can accurately reproduce many complex and detailed road patterns that 

are found in modern cities. This is demonstrated in sections 6.2 – 6.5 where system output is 
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compared to real world examples. High level patterns are recreated accurately and quickly 

using the interactive road network editing facilities. Adaptive roads plot the route of each 

road  to  realistically  fit  to  the  terrain.  Secondary  road  generation  provides  near  identical 

matches for the Manhattan and Industrial examples. The Suburban example attains a very 

close resemblance but the planned nature of suburban road networks can pose some problems 

for the organic-like road growth algorithm. The Lot Subdivision stage identifies realistic lots 

without the limitations of shape of accuracy found in previous work. Buildings are basic but 

are  designed  to  define  structure  for  further  generation.  Overall  the  system is  capable  of 

generating cityscapes that closely match real-world examples with only a few weaknesses.

Scale – The city generation system is designed to scale. The graph algorithms partition the 

city into self-contained cells. This limits the negative effects of large scale networks on the 

efficiency of the generation process.  True large-scale cityscapes covering an area of 16Km2 

with 15,000 roads and 57,000 buildings were tested in the performance section of 6.5 and did 

not pose any problems for the system.

Variation – The interactive road editor allows the user to specify any conceivable pattern in 

the high level road network. Using the parameter based secondary road generation a wide 

range of road networks can be constructed, varying from the rigid blocks of Manhattan to 

sprawling Suburbia. Building variety is limited to basic extrusions. Overall the system can 

produce a wide variety of road patterns and is unlimited in the style of output possible.

Input  – Minimal input data is required by the system. No geo-statistical data or land usage 

maps are required. The only input needed is a terrain height map to place the city on. Users 

are  responsible  for  defining  the  initial  high  level  road  network  but  this  stage  can  be 

completed quickly using the interactive tools.

Efficiency – Citygen partitions the road network into cells,  thus reducing the data-set for 

intersection tests. Several optimisations were also implemented, the snap algorithm discussed 

in section 4.3.3 proved to be the most influential. Only 1.6 seconds is required to create a test 

city of area 16Km2 with 15,000 roads and 57,000 buildings. See Figure 92 for more details.

Control – An interactive road network editor is used for the primary road network. Real-time 

feedback and an intuitive interface provide a tactile system of control for the user. Using this 

system any high level  road network pattern can be implemented  quickly and easily.  The 

adaptive road system is controlled via a few simple parameters and an overlay can be toggled 
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to  view the sampling points  and arcs.  Secondary roads growth is  again parameter  based, 

although several  pre-sets  can be selected  for  frequently used patterns.  To summarize  the 

system  provides  an  intuitive  form of  control  for  the  high  level  road  network  but  other 

generation stages are only controllable via input parameters.

Real-time – Complete cityscapes can be generated in near real-time, taking approximately 

1.6 seconds. Individual neighbourhoods take significantly less time, at around 60ms per cell. 

Each cell batches geometry resulting in efficient rendering of the cityscape.  Currently the 

system can be  explored  easily  in  real-time,  running  at  around 50fps  using  the  hardware 

configuration and cityscape described in Figure 92.

6.8 Final Output

In this final section of the results chapter we display a selection of screen-shots taken from 

the  Citygen  application.  The  city  model  shown in  the  screenshots  contains  over  82,000 

buildings and 18,000 roads. The complete generation time for the city including adaptive 

roads,  secondary  roads  and  buildings  is  only  1.7  seconds  using  the  same  hardware  as 

specified  in  Figure  92.  In  the  next  chapter,  we  shall  provide  some  conclusions  on  the 

research.

Figure 95: City Screenshot 1
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Figure 96: City Screenshot 2

Figure 97: City Screenshot 3
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Chapter 7
Conclusions

In  this  chapter  we  conclude  the  thesis  by  reviewing  our  initial  aims  and  outlining  the 

achievements  of  the  project.  There  is  also  a  project  assessment,  a  discussion  of  future 

research and finally a review of the applications with a number of conclusions.

7.1 Summary

This thesis began with the context, motivation and scope of the research. The content creation 

problem facing the computer  graphics industry was discussed and the field of procedural 

techniques  was  introduced  as  a  potential  solution.  The  additional  benefits  of  procedural 

generation in computer graphics were also outlined. Furthermore the scope of the project was 

refined to the application of procedural techniques to construct an urban environment model 

suitable for real-time rendering. Next, an overview into the field of procedural techniques 

was included. This described the properties of procedural techniques and identified the key 

properties of effective procedural generation algorithms. To gain an insight into what makes 

procedural techniques effective,  additional studies focused on the operation and results of 

successful established procedural algorithms such as Fractals, Perlin Noise, L-Systems and 

Tiling. A review of the existing research on procedural city generation was carried out and 

each approach was evaluated against a standard set of criteria: Realism,  Scale,  Variation, 

Input,  Efficiency, Control and Real-time optimisations. The approaches reviewed included 

the real-time system by Greuter et al.[2003], the L-systems based CityEngine by Parish and 

Müller [2001] and the agent based approach by Lechner et. al.[2004].  From the analysis the 

relative strengths and weaknesses of each approach was identified. It was determined that no 

system fulfilled the aims of our research and thus further validated the unique goals of our 
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project.  Following the review, the design of our system –  Citygen –  was presented. The 

process of city generation was decomposed into its constituent components. Primary roads 

were constructed using adaptive roads. Secondary roads were generated using a growth based 

algorithm in combination with a snap algorithm. A lot subdivision algorithm was applied to 

identify lots and basic buildings were constructed with advanced materials to simulate more 

geometry.  The implementation of an accessible, interactive and real-time application titled 

Citygen was described. All major components and their role in the system were outlined. Key 

technologies  such  as  the  built-in  game  engine,  graph  data  structures,  GUI  libraries  and 

geometry export were also discussed. In the results section we demonstrated the system in 

action, showing: the construction of the primary road network, the application of adaptive 

roads and the generation of secondary road patterns. We also provided a review of system 

performance, measuring the effectiveness of the optimisations developed along the way, and 

followed  with  a  short  feature  calculating  the  accessibility  of  the  system to  those  in  the 

graphics industry.

7.2 Achievements

Before assessing the major achievements of the project we first revisit the original goals as 

defined in Chapter 1. That was to develop a city generation system capable of producing the 

required  geometry,  materials  and  textures  to  model  a  cityscape.  Specifically  the  system 

should procedurally generate a city model that is:

● Realistic – of similar appearance to a real city, in particular the road networks must 

reproduce or emulate a number of distinct styles found in real city road networks.

● Large Scale – the size of the generated model must be comparable to that of an actual 

city, not a town or small urban settlement. A minimum building count of 50,000.

● Detailed – a level of detail comparable to that of a modern games title: with geometry 

suitable for real-time rendering but detailed enough to maintain realism.

In addition, the system should operate so that it is:

● Accessible: easy to use for novices, no reliance on expertise and minimal input data.

● Interactive: automatic but can facilitate manual and tactile control.

● Real-time: minimal generation time for an expansive range of applications.
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Finally, some practical objectives were to:

● Develop a portable multi-platform application that can serve as a complete integrated 

workspace for procedural city generation.

● Implement a system that can be rapidly developed and easily extended.

● Export data easily to fit into the pipeline of tools used in the graphics industry.

After reviewing the original goals we can now assess our system with these in mind.

The system applies a number of techniques to generate the geometry, materials and textures 

needed for a complete city model. Adaptive roads emulate the problems that difficult terrains 

can  cause  and,  like  the  real  world,  force  route  plans  to  be  compromised  and  fit  to  the 

environment. The result is a more realistic road path that introduces characteristics from the 

terrain  and  ensures  that  roads  fit  cohesively  into  the  world.  Secondary  road  generation 

operates in the enclosed regions of the main road network. This has been identified by several 

authors  as  a  key  boundary  between  neighbourhoods  which  can  each  possess  their  own 

distinctive style[Alexander et. al. 1977][Lynch 1960]. A growth based algorithm is employed 

to generate roads within the regions and a parameters sets are used to recreate several distinct 

styles taken from the real world. By using an editable primary road network with adaptive 

roads and self contained cells,  characteristics can be specified on a high level for a large 

area.  As  a  result,  it  is  easy  for  users  to  create  large-scale  urban  areas  with  distinct 

characteristics without the need to micro-manage finer details. Citygen enables the generation 

of urban geometry on a true city scale. Geometry is created for a limited number of assets 

such as roads, footpaths and buildings. This geometry is more basic than that found in the 

most modern games but it is suitable for real-time rendering and enables the display of the 

full  city at  interactive frame rates.  Extra  detail   is accomplished via the use of advanced 

materials that simulate additional geometry. The most up-to-date techniques are used, some 

of which are only present in the most recent gaming titles. Techniques like relief mapping, 

parallax occlusion mapping and displacement mapping help increase the visual fidelity of the 

output  model.  These techniques  applied  in  Citygen enable  the procedural  generation of a 

realistic, large-scale and detail city model.

The city generation system is operated via a unified interface with a live 3D view of the 

world. Any novice can use the point and click interface which is designed in a similar fashion 
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to mainstream 3D authoring tools. No input data, such as geo-statistical data or image maps 

are  required.  The  primary  road  network  can  be constructed  rapidly using  an  simple  and 

intuitive  interface  that  features  Auto-snap.  This  mechanism  aids  the  user  by  suggesting 

proposed actions and enforcing the integrity constraints of the graph. All neighbourhoods are 

automatically  detected  and  the  parameters  for  each  cell  can  be  viewed  in  the  property 

inspector. Users can modify parameters and view live updates. An adjacency and dependency 

model is used so that only the portions of the city that need updating are regenerated after 

each modification. Using this system, any component of the city can be modified at any stage 

in the generation process and the changes are propagated through in real-time maintaining 

interactivity. Road network nodes can be grabbed and manipulated with real-time generation 

results, thus enabling an element of tactile control for the user. The generation algorithms 

applied  in  the  system  are  designed  to  be  computationally  efficient  and  exploit  multiple 

threads of execution. This effort is required to produce near real-time speeds for complete 

city generation and expands the range of applications for the system. All of these features 

combine to provide an accessible, interactive and real-time city generation system.

Citygen is a single application that serves as an integrated workspace to operate procedural 

city  generation.  A built-in  game  engine  is  included  and  the  system  has  been  tested  on 

multiple platforms. Rapid development was accomplished by using established libraries and 

extensibility is guaranteed by adhering to open standards and transparent file formats. Export 

data fits easily into the graphics industry pipeline by using a popular open exchange format.

7.3 Project Assessment

This project accomplished its initial aims by completing the development of a procedural city 

generation system. The core aims of generating a city model that is realistic, large-scale and 

detailed  were  fulfilled.  The  success  in  each  of  these  particular  criteria  is  difficult  to 

determine. Realism, has been analysed in the results section and it can be seen that a number 

of different patterns  are represented and panoramic views over the cities  appear realistic. 

Scale, is not in question, the system can easily generate cities with over 50,000 buildings and 

there is no hard limit on the maximum number it can handle. The only core aim left in doubt 

is that of detail. Evaluating detail can be subjective but if we look back to the original aims 

we can see that the detail level should be 'comparable to that of a modern games title'. Using 

this as a guide we can conclude that the  city models generated by Citygen are on par with 
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many modern titles and superior to some genres such as flight simulators, etc. But, we must 

acknowledge that our solution could have produced better results to equal the detail found in 

every genre of modern gaming.

The  operation  of  our  system and  implementation  of  the  standalone  city  generation  tool, 

Citygen, have been most successful. The resulting application meets the original aims, it is an 

accessible, interactive and real-time tool that can enable developers to pick it up immediately 

and begin creating their own cities. The system that has been developed is cross-platform and 

employs open XML standards to import and export data thus ensuring extension is possible.

7.4 Future Work

In this section, a number of areas for improvement and future research are outlined. 

Probability distribution    

Random generators are used as part of the road growth and lot subdivision algorithms.  The 

random values acquired are used to apply the deviation values that accompany parameters. 

Currently  a  uniform  probability  distribution  is  used  in  the  Citygen application.  This  is 

adequate for many applications but it is not ideally suited to recreating the complex patterns 

found in cityscapes. A simple and obvious example of a parameter that can benefit from a 

different probability distribution is the 'building height' parameter. In a real city it is evident 

that  most  buildings are of a similar  height with only a few skyscrapers peeking out. If a 

normal  distribution  was  used  then  this  trait  and  many  others  could  be  replicated  in  the 

Citygen application. 

Additionally,  if  specialised  distributions  were acquired  from city  statistical  data  then  the 

generation  system  would  be  able  to  more  accurately  model  real  cityscapes  with  little 

additional computation required. Any code changes required to the  Citygen application are 

trivial as the system has been developed to use the boost random generator libraries which 

support  a  number  of  built-in  probability  distributions  and  allow  the  use  of  custom 

distributions [Boost 2007]. However, more research is required to find and analyse statistical 

data from existing cites that can be used to validate this theory.
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GPU Execution

In the Citygen system the generation of a cityscape is accomplished in stages via a hierarchy 

of  components.  Throughout  the city  generation  process,  many of  the components  can be 

computed in parallel. The most substantial generation time is spent within the city cells. Each 

of these cells are designed as independent work units that can be allocated and shared among 

a number of threads to exploit multi-core processors. Currently the number of threads used in 

the application is limited to the number of cores on the host machine.  It is no secret that 

increased  parallelism and multiple  cores  are  the  predominant  design  trends  in  advancing 

CPU processing power. 

Additionally,  immediate  gains  can  be  made  by  exploited  an  existing  piece  of  parallel 

programmable hardware present in any gaming computer. With GPGPU (General Purpose 

GPU)  programming  it  is  possible  to  offload  massive,  specialised,  parallel  computation 

workloads  onto  the  GPU for  efficient  calculation  [Trendall  and  Stewart  2000].  With  the 

advent  of  DirectX  10,  Geometry  Shaders  have  emerged  as  a  new  method  to  generate 

geometry on the GPU [Glassenberg 2006]. These changes in the graphics industry point to a 

determined move towards procedural techniques and in particular parallelisable procedural 

techniques.  Thus, the next logical step forwards for research is the optimisation of suitable 

procedural  generation  algorithms,  such  as  our  implementation  of  city  generation,  for 

execution on the GPU.

Real-time Rendering

Currently, the  Citygen system executes the procedural generation of every city component 

and region in advance and a single level of detail is supported. However, using the native 

graph structures within the Citygen application, proximity and region data can be utilised to 

provide  optimisations  for  real-time  rendering.  A  technique  is  proposed,  titled  City  Cell  

Paging, which is a method of geometry paging for cities. Similar to terrain paging algorithms 

the world is divided into regions and only the regions near to the camera need to be viewable 

and the remaining regions can be pre-emptively generated and loaded on demand using an 

adjacency  model.  To  accomplish  this  City  Cell  Paging scheme,  an  efficient  method  to 

calculate the proximity of  geometry and a structural partition of the city is required. The road 

graph data structures present in Citygen already contain the required adjacency data and can 

be used to access neighbouring regions directly without the need for expensive calculations. 

Each city  produced by Citygen is procedural generated in a series of regions and an inherent 
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hierarchical structure of regions composed of cells, blocks and lots is present. The adjacency 

model  and  hierarchical  partition  form  the  basic  building  blocks  for  such  a  scheme  but 

additional research and development is required to implement the proposed system.

Building Generation

The building materials applied in Citygen are selected from a very limited set. There are no 

technical constraints on the number of materials used, beyond the standard graphics memory 

limitations. The only reason for limited textures are the time requirements of their authoring. 

Material property sets can be edited in the  Citygen application so user edited textures and 

relief maps can be easily added. An obvious improvement could be gained in the realism and 

variety of the output if larger, more varied or professionally authored texture sets were used. 

The building geometries displayed in the Citygen application are primitive shapes defined by 

an extrusion of the proposed building footprint. These shapes provide basic visualisation for 

buildings but were primarily designed to provide a bounding volume that could be used later 

by a  dedicated  building  generation  component.  Further  research  is  required  to  develop  a 

building generation system or to integrate an existing generation component.

7.5 Conclusions

In  this  final  section  we  outline  the  applications  of our  system  and  draw  a  number  of 

conclusions on the success of our research. The procedural city generation system we have 

developed may not immediately solve the content creation problems facing the industry, but 

it can play a part by fulfilling a useful role in the construction of an urban model. Citygen, our 

standalone  application,  is  ready  to  use  and  provides  a  tool  for  content  authors  to  begin 

creating  their  own cities.  The  level  of  visual  detail  required  can  vary  depending  on  the 

application and for this reason our tool is likely to be used in different ways. In cases where 

high complexity models are required: Citygen can be used to generate a base model, this can 

be loaded as a background or imported into a 3D authoring tool like Maya,  via Collada, 

where more detail can be added. For applications where real-time rendering is a concern or 

where a lower complexity model is desired the system can be used to generate a complete 

city with user specified materials  and terrain. Additionally,  for applications such as flight 

simulators,  where a  large amount  of  low complexity  models  are  required,  the generation 

component could be linked into the users game engine and used to generate cityscapes on 

demand from concise definitions.
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The approach taken by our research has proved to yield a useful system that is easy to apply 

to the procedural generation of cities. The operation of Citygen is accessible and familiar to 

those working in the content creation field of the graphics industry. Obviously the generation 

system is not without faults and we have outlined a number of areas where future research 

would be beneficial.  However,  Citygen demonstrates that procedural techniques can create 

realistic  cityscapes  suitable  for real-time rendering and proves that  interactive  and tactile 

control for procedural city generation is both possible and desirable. Finally, as we look to 

the future, procedural techniques will undoubtedly become more predominant as researchers 

and developers encapsulate the behaviour of increasingly complex phenomena into code.
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