
An Interactive System for
Procedural City Generation

George Kelly
M.Sc. in Computing

Institute of Technology
Blanchardstown

2008

Supervisor: Hugh McCabe

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Masters in Computer Science in the Institute of Technology

Blanchardstown, is entirely my own work except where otherwise stated, and has not been

submitted for assessment for an academic purpose at this or any other academic institution

other than in partial fulfilment of the requirements of that stated above.

Signed: _______________________________ Dated: ___/___/_____

ii

Abstract
The rapidly growing computer game industry requires a highly skilled workforce and this

combined with the complexity of modern games, means that production costs are extremely

high. One of the most time-consuming aspects is the creation of game geometry, the virtual

world which the players inhabit. We have developed techniques to automatically generate

such geometry, thus removing the need for developers to construct it manually.

In this thesis a city generation system is presented that employs procedural techniques to

rapidly create the urban geometry typical of a modern city. The approach taken is unique in

that users are provided with an interactive interface to control the generation process. The

system enables the generation of the underlying road networks which form the structure of

cities and urban neighbourhoods. These road networks are automatically mapped to any

terrain model, and adapt themselves to the specific geometry of the underlying terrain. The

regions enclosed by roads are automatically extracted from the resulting road graph and

building lots are determined using a subdivision process. The buildings are placed within the

boundary of selected lots and basic geometric shapes are generated with advanced materials

containing shaders to simulate additional geometry. Tactile control is provided by allowing

the user to directly manipulate high level elements such as road intersection nodes and to

control the many other aspects of city generation via intuitive property inspectors. As users

alter the model the results are updated in real time, thus facilitating an interactive design

process. The system can be used to pre-generate geometry in advance or to enable dynamic

game environments where world geometry can be generated on demand.

iii

Contents

1 Introduction..1
1.1 Background...1
1.2 Procedural Generation...3
1.3 City Generation...4
1.4 Aims and Objectives...5
1.5 Achievements..6
1.6 Thesis Outline...6

2 Procedural Techniques Research...8
2.1 Key Properties...8
2.2 Fractals..10
2.3 L-Systems..11
2.4 Perlin Noise...13
2.5 Tiling...17

3 City Generation Research..19
3.1 The Structure of a City ...19

3.1.1 Primary Transit Network...20
3.1.2 Neighbourhoods / Districts..21

3.2 The Evaluation of City Generation Systems..23
3.2.1 Critical Framework..23

3.3 Grid Layout & Geometric Primitives..24
3.3.1 Buildings: Geometric Primitives..24
3.3.2 Real-time Optimisations..25
3.3.3 Discussion..26

3.4 L-systems..27
3.4.1 Road Network: L-systems..27
3.4.2 Buildings: L-systems...29
3.4.3 Discussion..32

3.5 Agent Based Simulation..33

iv

3.5.1 Road Network: Agent Based Simulation...33
3.5.2 Buildings: Agent Based Simulation...35
3.5.3 Discussion..36

3.6 Template Based Generation..37
3.6.1 Road Network: Template Based Generation...37
3.6.2 Discussion..39

3.7 Split Grammars...40
3.7.1 Buildings: Split Grammars..40
3.7.2 Discussion..42

3.8 Conclusions...43

4 Interactive City Generation Design...44
4.1 Overview...44
4.2 Primary Road Network..46

4.2.1 Adaptive Roads..47
4.2.2 Sampling..48
4.2.3 Sample Selection Strategies...49

4.3 Secondary Road Generation..50
4.3.1 City Cells...51
4.3.2 Secondary Road Growth..52
4.3.3 Snap Algorithm..55
4.3.4 Summary of Secondary Road Generation ...61

4.4 Building Generation..61
4.4.1 Blocks..62
4.4.2 Lot Subdivision..63
4.4.3 Building Construction ...70

4.5 Summary...74

5 Citygen Implementation ...75
5.1 An Introduction to the Citygen UI...75
5.2 View Edit..78
5.3 Node Edit..79

5.3.1 Add Node - Chain Tool..80
5.3.2 Validity Checking..80

v

5.4 Road Edit...82
5.4.1 Adaptive Road Control Properties...83

5.5 Cell Edit..84
5.5.1 Cell Generation Properties...84

5.6 Building Tiles..87
5.7 Integrated Game Engine: OGRE...88
5.8 Graph Structures: BGL (Boost Graph Library)...89
5.9 GUI Platform: wxWidgets...90
5.10 Accessible Export: COLLADA...91
5.11 Summary...91

6 City Generation Results...92
6.1 Primary Road Network..92
6.2 Adaptive Primary Roads...95
6.3 Secondary Road Growth...97
6.4 Building Generation..99
6.5 Performance..102
6.6 Development Integration...103
6.7 Analysis...104
6.8 Final Output..106

7 Conclusions..108
7.1 Summary...108
7.2 Achievements..109
7.3 Project Assessment..111
7.4 Future Work..112
7.5 Conclusions...114

vi

Related Publications
KELLY G. AND MCCABE H. 2007. Citygen: An Interactive System for Procedural City

Generation. In GDTW '07: Fifth International Conference on Game Design, Liverpool,
ACM. Pages 8–16.

KELLY G. AND MCCABE H. 2007. Interactive City Generation Methods. Poster presentation at
SIGGRAPH '07, San Diego, ACM.

KELLY G. AND MCCABE H. 2006. Interactive Generation of Cities for Real-time Applications.
Poster presentation at SIGGRAPH '06, Boston, ACM.

vii

Chapter 1 Introduction

Chapter 1
Introduction

The focus of our research is on the generation of city models via the application of

procedural techniques. By using a sequence of computer instructions we aspire to

automatically generate all of the geometry, materials and textures that constitute a 3D city

model. The motivation of our research is to achieve the efficient construction of realistic,

detailed and large scale urban environments and help solve the content creation problems

facing the graphics industry. In addition we aim to enable new features like dynamic game

environments, compact distribution models and accelerated rendering for large city scenes.

1.1 Background

Advances in the field of computer graphics are consistent and we are now in an era where

real-time photo-realistic rendering is common place and graphics processors exceed the

complexity of CPUs in terms of transistor count by a ratio of up to 4:1 [Nvidia 2007][AMD

2007]. The evolution of computer graphics has dramatically increased the computing power

available to developers and it has enabled the display of more realistic, detailed and large

scale 3D worlds than ever before. However, displaying these worlds on screen is only part of

the challenge. To provide this level of graphic detail in a final product, the detailed content—

including the geometry, materials and textures that make up the 3D worlds—must be created

by a fleet of artists. Content is traditionally defined as static assets and requires manual

construction. The authoring of such detailed and large scale content is both time consuming

and expensive. Even with the latest advancements in graphics hardware, the industry finds

itself in a position where the new level of visual fidelity can only be achieved with massive

financial resources to fund a new level of content creation.

1

Chapter 1 Introduction

The prohibitive cost of content creation results in the graphics industry, including games,

films, advertising and television, struggling to meet the consumers' expectations, as set by the

largest and most expensive titles. For those studios who can afford to, increasing the number

of artists working on a project is a simple method that can be used to create more content.

However, the effectiveness of this method is limited by the artistic pipeline not scaling,

additional artist numbers do not necessarily generate a proportional yield of content. These

inefficiencies add to the already high development costs of computer graphics. The result is

an increased barrier of entry for new development firms, thus stifling innovation in the

industry.

One potential solution to the content creation problem is the application of procedural

techniques [IDV Inc. 2006][Wright 2005]. Traditional approaches to content creation rely on

the use of static assets to define the world. These static assets are largely inflexible, not easily

modified and their reuse is limited. Procedural techniques define assets using a set of

computer instructions. The geometry, textures or behaviours of the asset are then generated

automatically using these instructions. Furthermore by parametrizing the generation functions

a wide range of output can be created. This property enables procedural assets to be far more

flexible than static assets, offering much greater re-usability and range of output.

Additional benefits can be provided by the application of procedural techniques, with some

particularly novel applications in gaming. By encoding the behaviour of the entities in a game

world, it is possible to create several different instances of each entity, enabling the creation a

unique environment with each play of the game. Using these dynamic game environments

new game-play aspects can be introduced, the longevity of a title can be improved and

entirely new gaming concepts can be applied [Wright 2005]. Procedural techniques can also

provide practical benefits to the distribution of games. The concise nature of procedural

assets stand in direct contrast to traditional static assets where several CDs, DVDs, and even

Blu-ray discs are required to distribute a single application. Procedural techniques employ

algorithms to generate content on-the-fly, which allows applications to make significant

space savings. This is most evident in the Demo Scene where graphically detailed

applications are distributed in a number of Kilobytes not Gigabytes [Scene Awards 2004]

[Farbrausch 2007]. In practice a hybrid approach is used, where some static assets are

necessary but procedural techniques are applied for selected assets to enable enhanced detail

and more efficient distribution.

2

Chapter 1 Introduction

1.2 Procedural Generation

Procedural generation can be defined as the application of computer instructions to

automatically generate geometry and textures. The construction of complex geometric objects

is a new phenomenon in computer graphics, even though procedural techniques have been

used for over 20 years to one degree or another. Recently these techniques have been

extended to successfully model complex natural objects such as trees, waterfalls and clouds

[IDV Inc. 2006][Ebert et al. 2003].

Early procedural algorithms were primarily concerned with the construction of textures. This

can be seen in Perlin Noise, which was devised to add a natural appearance to textures by

creating a coherent form of noise by layering noise textures to add a more natural appearance

[Perlin 1985]. This technique has also been applied to generate solid textures of natural

materials such as marble [Perlin 1999]. Other techniques emulate natural cellular materials by

using Voronoi Diagrams to create textures of skin, bark and cobblestone [Ebert et al. 2003].

The construction of complex geometry in games has only recently been carried out using

procedural techniques. One area to which these techniques have been applied successfully is

to the generation of trees and plants. In 1990 A. Lindenmayer and P. Prusinkiewicz released a

book titled Algorithmic Beauty of Plants that introduced a system of graphically modelling

plants using a rewriting system [Prusinkiewicz and Lindenmayer 1990]. This book illustrated

how complex plants could be generated from a concise definition and documented a formal

grammar to describe the structure of these plants. Although no immediate effects were

noticeable in game development it did provide inspiration for further research. A commercial

real-time tree generation system titled SpeedTree RT by IDV was first licensed in 2002 and

provides a solution for generating trees in games and other computer graphics applications.

SpeedTree RT has been used by numerous game studios including Rockstar, Microsoft, Epic

and Sony [IDV Inc. 2006]. The system has also received several middle-ware awards and

garnered noticeable attention for its application of procedural generation [Gamasutra 2002].

Entire worlds can be constructed from procedural techniques, where assets including realistic

natural features such as terrain, lakes, trees and shrubs are procedurally generated

[Pandromeda 2006]. The widespread application of procedural techniques has been largely

confined to technical demonstrations and show-cases.

3

Chapter 1 Introduction

Figure 1: SpeedTree RT [IDV Inc. 2006]

In the computer graphics industry, and in particular the games industry, procedural generation

is seen as a complementary technology that can be used to supplement traditional artist-

authored content. The application of procedural assets has been limited to the construction of

natural phenomena such as trees, shrubs and terrain, but has equal relevancy for the

construction of man-made phenomena. With games such as Spore continuing to expand the

boundaries of procedural generation, these techniques and their range of applications will

continue to grow beyond simple flora [Wright 2005].

1.3 City Generation

Cityscapes are difficult to model. They are both visually and functionally complex and are a

result of an elaborate evolutionary process that takes place over hundreds of years under the

influence of countless factors. Some of the major influential factors affecting cities include

population, transport, environment, elevation, vegetation, geology and cultural influences. It

is a formidable challenge to create a realistic model of such a large and complex system.

To design a procedural generation system that can construct realistic cityscapes, it is

important to identify and carefully select a reduced set of factors to model. A number of

urban design and architecture authors have discussed many aspects of cityscapes including

the patterns present and the constituent components. Kevin Lynch writes about the image of

the city and human perception. He itemises constituent elements of cities such as paths,

4

Chapter 1 Introduction

edges, landmarks, nodes and regions [Lynch 1960]. Alexander et al. documents a number of

patterns found within cities such as neighbourhoods, public areas and special buildings

[Alexander et. al. 1977]. Using this research suitable candidates are identified and only the

most predominant patterns and features of cities are selected for modelling.

Specifically our research focuses on the patterns of road networks, the divisions of

neighbourhoods and building construction. The primary, or main roads act as traffic flow

arteries, whose function it is to transport people and goods around the city from one district to

another. In addition, the primary roads often convey essential characteristics of the city and

form tangible boundaries that divide the city into regions or neighbourhoods. Within each of

these neighbourhoods we find the secondary roads that service the local area by providing

access to and from the primary road network. Buildings are only situated or placed within

access of the primary or secondary road network.

1.4 Aims and Objectives

Our general aim is to develop a city generation system that produces the required geometry,

materials and textures to model a cityscape. In particular the system should be capable of:

● producing a city model that is realistic, detailed, large scale and fits into the

surrounding environment.

● generating road networks that reproduce or emulate a number of distinct styles found

in real city road networks.

● constructing primitive buildings that are suitable for use in real-time rendering but

detailed enough to maintain the realism of the city.

If successful, the system should do the above in such a way that:

● interactive and tactile control of city generation is possible.

● it is easy to use and accessible to novice users.

● output can be easily used by those working in the graphics industry.

In addition to this, some practical objectives are to:

● implement a portable multi-platform workspace for city generation.

● implement the system such that it can be easily developed and extended.

5

Chapter 1 Introduction

1.5 Achievements

In this thesis we document our research in the area of procedural city generation. The

concepts and ideas proposed to solve the city generation problem are outlined, the generation

system is described and the results are evaluated. Notable achievements of the work can be

summarised as follows:

● Study of procedural techniques: their background, principles and the key properties

which distinguish successful algorithms. Analysis of related city generation research,

including an outline of the algorithms, and an evaluation of the output generated.

● Design of an adaptive road system that automatically plots the path each road takes by

sampling terrain and fitting the road to the environment according to a pre-specified

strategy.

● Design of a real-time road growth algorithm and an efficient system to calculate

intersection and proximity status for each road segment added.

● Implementation of an interactive city generation system. A cross-platform graphical

application provides an integrated workspace to view, edit and interactively control

the complete city generation process.

● Testing and evaluation of the city generation system where the operation,

performance and output of the system is evaluated.

1.6 Thesis Outline

In this introduction some background information has been provided, procedural techniques

have been introduced, the motivation for research has been outlined and the goals and major

achievements have been listed. On this basis an understanding of the research has been

established and the rest of this thesis will cover in more detail the related literature, theory,

design, implementation and results.

In the next chapter, Chapter 2, we provide an overview of the subject of procedural

techniques and present a number of key techniques and algorithms that have been applied

successfully in the field of computer graphics. In Chapter 3 previous research into the

procedural generation of cities is reviewed and an analysis of the existing solutions is

provided. Chapter 4 outlines the design for our interactive city generation system called

6

Chapter 1 Introduction

Citygen, and explains the operation of the main components. Chapter 5 documents the

implementation of Citygen including the tools, libraries and algorithms used. In Chapter 6 the

results of the city generation system are presented and areas for possible future research are

considered. Finally some conclusions are provided.

7

Chapter 2 Procedural Techniques Research

Chapter 2
Procedural Techniques Research

In this chapter an overview is provided into the field of procedural techniques and their

application in the computer graphics world. A description of general procedural techniques is

included and several key properties of effective algorithms are identified. In order to gain an

insight into the application of procedural techniques an outline into the operation and results

of several of the most influential techniques is provided. This study includes techniques such

as Fractals, Perlin Noise, L-Systems and Cellular Basis algorithms.

2.1 Key Properties

A procedural technique describes an entity, geometry, texture or effect, in terms of a

sequence of generation instructions rather than as a static block of data. These instructions

can then be executed to create instances of the asset and parameters can be used to vary

characteristics. Procedural techniques can thus be employed to produce a wide range of

assets, from generating simple noise for use in texturing and natural formations [Perlin 1985],

to more complex recursive algorithms such as fractals or L-systems that can recreate organic

structures such as snow flakes and trees [Prusinkiewicz and Lindenmayer 1990].

Key properties of successful procedural techniques include [Ebert et al. 2003]:

• Abstraction: Data is not specified in the conventional sense as geometry, textures, etc.

but instead the data and behaviour of the entity is abstracted into an algorithm or a set of

procedures. Minimal knowledge is required by the operator and model data can be

manipulated easily without requiring details of the implementation.

8

Chapter 2 Procedural Techniques Research

• Parametric Control: Parameters directly correspond to a specific behaviour in the

procedural generation. The developer can define as many useful controls as required for

the artists to operate effectively. Example of parameters include the height of the

mountains in a terrain algorithm or the number of segments in a procedural sphere.

• Flexibility: It is possible to capture the essence of an entity without explicitly bounding

it within real-world limits. Parameters can then be varied to produce different results as

desired and even results outside the normal range of the original model can be generated.

Procedural techniques have been applied successfully in the generation of numerous complex

phenomena in computer graphics and have proved beneficial for a number of reasons.

Textures, geometry or effects abstracted into procedural algorithms are not fixed at a set

resolution or number of polygons. Procedural techniques are therefore inherently multi-

resolution in nature and the complexity of their output can be varied. This capability is of

particular interest to computer graphics practitioners. For example level of detail (LOD) is

important in any 3D rendering system and essential to real-time rendering applications

[Akenine-Möller and Haines 2002]. The concept behind LOD is to use more simple versions

of an entity if it contributes less to the final rendered image. So for an object that occupies

only 4 pixels in the final image, 10,000 polygons are not required and a basic representation

using 10 polygons would be sufficient. The multi-resolution nature of procedural techniques

allows models to be automatically generated at several levels of detail [Ebert et al. 2003].

Concise descriptions for generated objects are possible and can often be expressed in terms of

a few simple parameters. These small descriptions can be used to create large amounts of

detailed textures and geometry. This effect is known as data amplification [Ebert et al. 2003]

and provides developers with the means to create an entire world that is easily distributable

over low-bandwidth network connections. The conciseness of procedural techniques are

exploited by Demo Scene creators who create and distribute scenes that are complex and rich

in detail in the form of tiny executable files as small as 2KB [Scene Awards 2004].

The flexibility and control provided by procedural techniques give the designer a platform for

artistic freedom and experimentation. New visual effects and original objects can be created

by experimenting with parameter values that exceed normal boundaries [SideEffects 2005].

Typically procedural algorithms are implemented in advance on software, however with

recent advances in graphics hardware it is possible to execute techniques in real-time on the

9

Chapter 2 Procedural Techniques Research

GPU. For example, complex procedural techniques like volumetric textures that were

previously impossible to run in real-time can now be implemented in this manner [Hart 2002]

[Spitzer et al. 2003].

A number of fundamental procedural techniques and algorithms are now described that have

been successfully employed within the domain of computer graphics.

2.2 Fractals

Natural shapes are not easily described by conventional geometric methods. Clouds are not

spheres and mountains are not cones. Natural shapes tend to be irregular and fragmented and

exhibit a complexity incomparable to regular geometry [Mandelbrot 1982]. However these

shapes can be described using a branch of mathematics called fractal mathematics. Benoît

Mandelbrot, regarded as the 'father of fractals', coined the term fractal in 1975 from the Latin

fractus meaning broken. The basic concept of fractals is that they contain a large degree of

self similarity. This means that they usually contain little copies of themselves buried deep

within the original, like the stars embedded in the Koch Snowflake [Ebert et al. 2003], as

shown in Figure 2. Also, fractals possess infinite detail, so for any given fractal, the closer we

look at it, the more detail it can reveal [Linden and Schachinger 2002].

Figure 2: The first four iterations of the Koch snowflake

The Koch snowflake in Figure 2 shows four recursions. Self-similarity is achieved by

generating the same shapes or patterns at smaller and smaller scales as the recursion

progresses, a property referred to as scale invariance. There is no theoretical limit to the

amount of recursion that can be done and hence infinite levels of detail can exist within the

shape. Visualizing fractals manually is difficult, and therefore computer based

implementations of fractal algorithms have been present from the start. Mandelbrot used

computers to visualise complex fractals including the Mandelbrot Set shown in Figure 3

[Mandelbrot 1982]. In addition, a wide range of natural structures from simple plants like

10

Chapter 2 Procedural Techniques Research

ferns as shown in Figure 4, to detailed terrain, contain fractal properties and can be generated

using simple recursive algorithms [Barnsley 1988]. Fractal algorithms are particularly suited

to procedural generation because of the effective abstraction they provide from the structural

complexity of the natural objects they represent. Also, fractal algorithms yield a high level of

data amplification. Complex models can be generated from a few simple equations. Finally

fractal algorithms can utilize recursion to provide varying levels of detail.

Figure 3: Mandelbrot Set Figure 4: IFS Fractal Ferns [Barnsley 1988]

Fractals are limited however to self similar structures and the objects we are seeking to model

may not necessarily contain this self-similarity. They are superseded in many contexts by

other more flexible algorithms like formal grammars such as L-systems.

2.3 L-Systems

L-systems are a formal grammar devised by biologist A. Lindenmayer as a mathematical

theory for biological development. L-systems were originally developed to study bacteria

replication and the growth patterns of simple organisms [Lindenmayer 1968]. Since then the

system has been extended to define more complex objects such as plants and branching

structures. In the book, Algorithmic Beauty of Plants, the developmental process of plants is

captured using the formalism of L-systems and visualised with computer graphics

[Prusinkiewicz and Lindenmayer 1990].

The central concept of L-systems is that of rewriting, a technique for defining complex

objects by successively replacing parts of a simple initial object using rewriting rules. An

example of a simple L-system is shown in Figure 5. An initial state or axiom, ω, is a string of

symbols and constants that define the initial state of the system. A series of rewriting rules or

11

Chapter 2 Procedural Techniques Research

productions, P, are then defined. Each of these consist of two strings: the predecessor and the

successor, that specify the way variables can be replaced. These rules are applied

successively, allowing large complex objects to be quickly generated from a simple axiom.

V : {a, b} n=0 : a

ω : a n=1 : ab

P1 : a → ab n=2 : aba

P2 : b → a n=3 : abaab

Figure 5: Algae Growth: three iterations

L-systems can be used to visualise structures by embedding graphical symbols in the

vocabulary of the axiom or productions. Turtle commands are used to describe and visualize

a range of L-systems including plants and branching structures. The idea behind turtle

graphics is that the 'turtle' can be given instructions relative to its current position and as it

moves it leaves a pen line mark behind it. The bracket extension was proposed by

Lindenmayer to support the branching structures that are common in nature [Lindenmayer

1968]. Figure 6 displays an example of such a structure defined as an L-system using the

bracket extension.

n=5, δ=22.5◦

ω = X

P1 : X→F-[[X]+X]+F[+FX]-X

P2 : F→FF

Figure 6: L-system branch generated in turtle graphics[Prusinkiewicz and Lindenmayer 1990]

12

Chapter 2 Procedural Techniques Research

Figure 7: Procedurally generated tree used in a modern 3D game [IDV Inc. 2006].

Research into L-systems has continued, and significant advances have been made with

commercial packages now available that can apply similar techniques to generate rich

landscapes with detailed foliage including shrubs, plants and trees. Figure 7 shows a

demonstration of the SpeedTree plug-in from IDV Inc. which enables graphics developers to

easily populate scenes with a realistic and diverse range of plants and trees [IDV Inc. 2006].

L-systems work well as a procedural technique for a number of reasons. They allow complex

models and organic structures to be defined, modelled and visualised using a concise set of

productions. A varying level of complexity can be supported by parameters such as the

recursion level of the L-system [Lluch et al. 2003]. The algorithms can be defined in a

compact and intuitive manner and can effectively abstract the recursive structure of many

natural phenomena. L-system generation can be adjusted easily via external parameters and is

extensible by design, in a similar way to other formal grammars.

2.4 Perlin Noise

Perlin Noise is an algorithm that can be used to create more natural looking textures. The

technique was originally developed by Ken Perlin and was first applied in the feature film

Tron released in 1982 [Perlin 1985]. The technique has a range of applications in computer

graphics including the creation of effects like fire and clouds and the generation of fractal

geometry like terrain.

13

Chapter 2 Procedural Techniques Research

The concept behind Perlin Noise is to combine a number of noise layers together to produce a

single texture of coherent noise with fractal like detail. A Coherent noise function can be

defined as one in which the values change smoothly from one point to the other.

Two major components are used to accomplish this: a noise generation function and an

interpolation function.

Noise generation is achieved by employing a simple random function to construct an initial

noise data set. It is important that the data output is controlled and reproducible. For this

reason a seeded random generator is used which can produce consistent results for a given

input seed and maintain a random output pattern.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 8: Interpolation Linear and Cubic

Interpolation is a process of curve fitting in which a function is constructed that can match a

given data set. Using this function, new data points can be calculated from a initial set of

values, in this case the data generated by the noise function. No specific interpolation

algorithm is required for Perlin Noise and each algorithm can vary in computational

complexity, smoothness of function curve, accuracy and number of data points required.

Linear interpolation is a basic method, fast and of low quality. Cubic interpolation in contrast

is more complex, significantly slower, outputs a high quality curve and requires four points to

obtain a single value.

The interpolation process allows any random noise data to be expressed as a continuous

function. From these functions a number of noise texture layers can be created using any

specified frequencies and amplitudes.

14

Chapter 2 Procedural Techniques Research

 + + + =

amplitude: a
frequency: f/8

amplitude: a/2
frequency: f/4

amplitude: a/4
frequency: f/2

amplitude: a/8
frequency: f

octaves: 4
persistence: 1/2

Figure 9: Combination of several layers of noise.

Turbulence is finally applied by combining several noise texture layers of differing scales

together. This creates a form of coherent noise. Each layer is referred to as an Octave and the

ratio between amplitude and frequency of the layers can be expressed as a constant known as

persistence. The resulting output is a natural looking procedural texture that can be defined in

terms of a few simple parameters.

Figure 10: Photo realistic scenery and rendered using Terragen with procedural geometry
generation and procedural texturing. ©2003 M. GIULI.

In nature, there are several scales of detail present. For example, in terrain, large features like

mountains are most predominant, but also smaller features like hills and crests, and even fine

detail such as scree are also present. These layers of detail make procedural techniques like

Perlin Noise especially suited to generating natural phenomena. Terragen uses the Perlin

algorithm to generate photo realistic terrain, clouds and seas [Planetside 2004]. Figure 10

showcases the detail and scale of output that is possible using procedural techniques. The

persistence parameter can be used to control aspects of terrain generation. A low ratio of

persistence can produce smooth terrain with very fine detail, and high persistence may result

in more jagged terrain with less fine detail. For real-time rendering applications, the Perlin

Noise algorithm can generate any specific region of the terrain on demand and vary the level

of detail present without needing to store the massive data-set of the terrain geometry.

15

Chapter 2 Procedural Techniques Research

Solid textures, also known as three dimensional or volumetric textures, can be generated

using Perlin Noise. Solid textures differ from conventional two dimensional textures in that

they allow objects to be virtually carved from the texture as they would be carved out of a

solid block of material [Perlin 1999]. An example is shown in Figure 11 of a vase that is

carved out of a volumetric marble texture

created using the Perlin noise algorithm. The

texture replicates the veins of darker material

running through the marble and achieves a

higher level of realism than is possible using

basic 2D texturing techniques. Solid textures are

computationally expensive to render with high

memory and storage requirements. Compression

such as S3TC can partly alleviate this problem

but still results in high requirements. Perlin

Noise can be used to solve this problem as it

requires minimal storage due to its procedural

nature, and can even be used to render

volumetric textures in real-time using the pixel-

shader hardware on the GPU, effectively

removing any memory constraints [Hart 2002].

Perlin Noise provides a comprehensive set of benefits. Effective parametrization gives the

developer control of the output using high level parameters. Geometry and textures created

using the algorithm have minimal storage requirements and can be generated from a concise

definition consisting of a few simple parameters. Textures of any size and detail can be

produced and the innate behaviour of the algorithm can exploited to support varying levels of

detail. The output generated is tile-able and can join seamlessly, thus enabling techniques like

repeating and layering for multi-texturing. Additionally, the technique can be used as a

method of enabling real-time volumetric textures on modern graphics hardware. Perlin Noise

is one of the most useful and frequently used procedural techniques and is beneficial in a

wide range of computer graphics applications.

16

Figure 11: Marble vase textured with a
solid texture [Perlin 1999].

Chapter 2 Procedural Techniques Research

2.5 Tiling

Tiling is one of the most basic procedural techniques and has a long tradition in game

development. Many of the classic platform titles such as Mario employed tiling to repeat

sections of 2D graphics creating a virtual world. Games such as the Shoot Em Up

Construction Kit, released in 1987 by Sensible Software, allowed the user to construct and

edit game maps by providing a simple interface to select and position tiles from a tile library

[Sensible 1987]. Figure 12, shown below, demonstrates an example tileset and a

corresponding screenshot for the Super Mario Bros game by Nintendo.

Figure 12: Super Mario Bros. 2 (Lost Levels), © Nintendo Japan Ltd.

More recently multi-texturing techniques have evolved and use repeatable tiles layered

together to create highly detailed and varied textures. New materials can be created by

combining a set of detailed textures, colour maps and blending maps. Using this technique

terrain can be procedurally textured by applying several layers of detailed tile-able textures.

Examples of texture layers could include rock, grass, sand and snow. Also texture layers can

be combined with varying degrees of influence on the final texture. Textures are applied to

the terrain according to a variety of specified parameters, they can be selected according to

height, slope, or specified explicitly using an image map [Planetside 2004]. This solution

allows vast areas to be textured in detail, something that is not possible using a single high

resolution texture.

17

Chapter 2 Procedural Techniques Research

Figure 13: From left to right: a) Regular and transition patterns and the probability map.
b) Virtual texture. c) Virtual texture mapped on terrain. [Lefebvre and Neyret 2003]

Extended algorithms have also been developed that use stochastic information such as

probability distribution maps to procedurally texture landscape [Lefebvre and Neyret 2003].

An image map for the terrain area is supplied that stores the probability of using various tiles.

Constraints can be specified to state which tiles can be joined under what conditions and

whether they may be joined directly or require transitional tiles. Using a random function

thousands of different permutations of worlds are possible from a single probability map.

Procedural tiling systems provide several advantages for graphics applications. Vast and

detailed landscape or terrain for virtual worlds can be created from stochastic information and

small sets of texture tiles. These maps and game worlds can then be easily distributed for on-

line gaming which is particularly useful for massively multi-player on-line role-playing

games (MMORG) and other on-line applications where game resources are shared. Storage

and memory requirements are minimised so it is possible to optimally store and render worlds

of vast dimensions in real-time on commodity hardware. Tiling is a good example of how a

simple procedural technique can be applied and extended successfully in computer graphics.

18

Chapter 3 City Generation Research

Chapter 3
City Generation Research

In the previous chapter we introduced procedural techniques and discussed the benefits they

can bring to computer graphics. In this chapter we shall look at the structure of a modern city,

and discuss the work of urban design and architecture authors who identify some key patterns

and constituent components. Before reviewing the existing city generation research, a critical

framework is established. Then an overview of each city generation system is presented, and

an insight is provided into the operation of each systems' algorithms. A discussion

accompanies each overview, using the critical framework to evaluate the strengths and

weaknesses of each approach.

3.1 The Structure of a City

Cities are both visually and functionally complex. To obtain a better understanding of these

complex systems and their structures, we look at the research which identifies the patterns

and the constituent elements. Urban design and architecture authors have discussed a large

number of wide-ranging topics relating to cityscapes. From the research studied we have

selected work that relates closely to city structure and presents the most direct correlation to

city generation. Two publications in particular fulfil these criteria: Kevin Lynch writes about

the image of the city and human perception, he itemises the constituent elements of cities as

paths, edges, districts, nodes, and landmarks [Lynch 1960]. Alexander et al. document the

patterns found within cities such as neighbourhoods, public areas and special buildings

[Alexander et. al. 1977]. The following sections discusses this research in two sections:

Primary Transit Network and Neighbourhoods / Districts.

19

Chapter 3 City Generation Research

3.1.1 Primary Transit Network

The primary transit network consists of the main roads or highways of a city, the major rail

lines and waterways. This network is an important element in determining the sub-structure

of a city and is instrumental in our interpretation of

From a visual perspective the primary transit network is perceived by both occupants and

outside observers as the most predominant and recognisable pattern present in city structure.

This theory can be reinforced by the research of Kevin Lynch. In The Image of the City he

documents a number of reasons for the importance of the primary transit network and its

significance on our perception of the city. Firstly the concept of Paths is introduced: “Paths

are the channels along which the observer customarily, occasionally, or potentially moves”

[Lynch 1960]. In cities most transport is accomplished via road and the primary road network

forms the main arteries and transport channels of the city. These Paths specify the location

and route from which the city is observed and thus form a lasting impression on our image of

the city. Lynch does not understate the importance of Paths on our perception of cities, he

states that they are the “predominant elements” in our image of the city [1960]. Secondly the

more abstract concept of Nodes is described. Nodes are termed as “points, the strategic spots

in a city into which the observer can enter, and which are the intensive foci to and from

which he is travelling” [1960]. Although they are not specific to the transit network the

relationship between Nodes and the network is explained: “They may be primarily junctions,

places of a break in transportation, a crossing or convergence of paths”[1960]. So in relation

to the primary transit network we can easily draw a parallel between the junctions as Nodes

and roads or tracks as Paths. Both have a significant impact on our perception and thus play

an important role in determining the recognisable character of a cityscape.

Functionally, the primary transit network is most significant to us as users of the city. The

locations and structure of this network must be understood to navigate and move around the

city. For this reason when arriving at a new city one of the first things many of us will do is

purchase a map. Inside a city map the primary road network is emphasised to appear most

evident and the rail network map will often occupy a separate page. Later we will frequently

reference these networks on the map to find our bearings. Our comprehension of the transit

network is essential to our understanding of a city and it is a key factor in our recognition of

city characteristics.

20

Chapter 3 City Generation Research

Milan – Concentric Rings Paris – Radial Spokes

Figure 14: Predominant Pattern in Existing Cities (Map)

Shown above in Figure 14 are two predominant patterns from two modern cities, Milan and

Paris. The images illustrate how visible the patterns of the primary road network are and how

they form an intrinsic part of city character.

3.1.2 Neighbourhoods / Districts

Neighbourhoods, or districts, are areas of the city which have an identifiable character and a

tangible boundary. Each city is composed of component districts, for example: the city

centre, the financial district, residential areas, industrial areas, suburbs and so on.

Urban research helps define these areas and explain the relationships with the city occupants.

Lynch defines districts as “medium-to-large sections of the city, which the observer mentally

enters 'inside of' and which are recognizable as having some common, identifying

character”[Lynch 1960]. Alexander et al. discuss the importance of neighbourhoods and their

relationship to the occupants of the city. In the pattern titled Identifiable Neighbourhood he

describes these regions and the relationship with the occupants: “People need an identifiable

spatial unit to belong to. They want to to be able to identify the part of the city where they

live as distinct from all others”[Alexander et. al. 1977].

The boundaries of each neighbourhood are important to maintaining the integrity and

character of the unit. Alexander et al. liken neighbourhoods to cells, and state the importance

of boundaries. “The strength of the boundary is essential to a neighbourhood. If the boundary

is too weak the neighbourhood will not be able to maintain its own identifiable character”

21

Chapter 3 City Generation Research

[1977]. The specific components of the cityscape that constitute the boundaries for these

regions are described in the patterns Subculture and Neighbourhood Boundary [1977].

Figure 15: Cells [Alexander et. al. 1977] Figure 16: Neighbourhood / District
Boundaries [Alexander et. al. 1977]

These cityscape components include both natural boundaries – such as rivers and lakes and

also man-made boundaries – such as major roads and rail roads [1977]. Lynch terms the

boundaries between districts as Edges, which he describes as linear breaks not considered as

paths [1960]. These Edges may consist of elements such as shores, rivers, railroad-cuts and

major roads. Although rail tracks and roads are also paths, they may be considered as Edges

when they act as a barrier to the access of a district. For example consider a major road

running through a residential area, in this case the road can restrict the movement of

pedestrians in the local area and now acts more as an Edge than as a Path. Alexander et. al.

reference the “Appleyard-Lintell” study and define a metric stating that a road with more

than 200 cars per hour deteriorates the quality of the neighbourhood and forms a barrier to fee

pedestrian movement [1977].

Identifying components that constitute districts and their associated boundaries provide us

with an insight into the structure of cities. It is clear from the urban research that the city-

wide primary transit network alongside natural features are key to determining the boundaries

of more local structures such as districts or neighbourhoods. Based on this research we can

conclude that the primary transit network is an important aspect of the cityscape and its affect

on the sub-structure is wide ranging. Therefore, an obvious recommendation can be made, to

create a successful city generation system an accessible method of control for this influential

element should be provided.

22

Chapter 3 City Generation Research

3.2 The Evaluation of City Generation Systems

City generation is achieved in a series of stages, with each applying one or more algorithms

to generate a constituent component of a city. There is no predefined scope for any stage and

each system has a unique approach making direct comparisons difficult. The generation

process can however be divided into two main stages: Road Generation and Building

Generation. For these stages an overview is presented for each city generation system and an

insight is provided into the operation of the procedural techniques applied.

3.2.1 Critical Framework

In order to evaluate the output created by the generation systems and the effectiveness of the

the applied procedural techniques we identify a common set of criteria:

1. Realism – Does the output of the city generation system look like a real city? How much

detail is present and how true is the generated model to a real city model?

2. Scale – Is the urban landscape generated up to the scale of a city? How many roads,

neighbourhoods and buildings are generated?

3. Variation – Can the city generation system recreate the variation of road networks and

buildings found in real cities or is the output homogeneous?

4. Input – What is the minimal input data required to generate basic output and what input

data is required for the best output?

5. Efficiency – How long does it take to create the examples shown and on what hardware

are they generated? How computational efficient is the algorithm?

6. Control – Can the user control the city generation process? To what degree can the user

influence the generation results? Are the control methods applied intuitive or restricted?

7. Real-time – Are city geometry and textures generated in real-time? Are any rendering

optimisations applied and can the city be rendered or explored in real-time?

The results of each approach are evaluated, using the criteria outlined above, to determine the

effectiveness of the city generation systems and their associated procedural techniques.

23

Chapter 3 City Generation Research

3.3 Grid Layout & Geometric Primitives

Stefan Greuter et al. describe a system to procedurally generate a city in real-time [Greuter et

al. 2003][Greuter et al. 2004]. The techniques applied to generate the city are discussed in a

number of papers and demonstrated in a virtual city application titled Undiscovered City. The

application creates a road network using a simple grid layout upon which it can place

buildings generated using a combination of simple geometric primitives. The research is

specifically targeted at real-time applications and the Undiscovered City application is a proof

of concept for this idea. The system runs in real-time and renders at interactive frame rates.

3.3.1 Buildings: Geometric Primitives

The building generation system uses the location of buildings in the form of grid coordinates

as a seed for building generation. The appearance of each building is determined by this seed

including properties such as height, width and number of floors. Generating buildings using a

similar set of numbers such as neighbouring grid coordinates can result in similar looking

buildings, so to overcome this a hashing function (shown in Figure 17) is implemented in

order to provide more random distribution.

Figure 17: Grid Layout Coordinates & Hashing [Greuter et al. 2003]

Building geometry is generated by combining geometric primitives to form building sections.

Each building section is constructed using a different floor plan. The top most section of the

buildings are created by extruding a three dimensional volume from the most basic of floor

plans, composed from only a few primitive shapes. In subsequent sections below, another

primitive shape is added to the previous floor plan and a three dimensional volume is

extruded in the same fashion. Figure 18 illustrates how the creation of consecutive sections

are combined to form the complete geometric model of a building. Figure 20 shows the

generated buildings with their textured faces which are not procedurally generated but are

selected from a set of 10 building window textures.

24

Chapter 3 City Generation Research

Figure 18: Floor Plan Generation [Greuter et al. 2003]

3.3.2 Real-time Optimisations

The Undiscovered City is designed with real-time applications in mind and implements

optimisations such as a geometry caching and view frustum culling. The culling technique,

referred to as View Frustum Filling (shown in Figure 19), renders only the buildings visible

within the view frustum. By loading and rendering a reduced set of buildings the amount of

memory required to store the scene and the graphical processing power required to render the

scene are minimised, enabling the real-time rendering of a large data set like a city. The grid

road network allows easy detection of building visibility within the view frustum and hence

provides a computationally efficient method to cull superfluous buildings from view.

Figure 19: View Frustum Filling [Greuter et al. 2003]

In addition to culling building geometry, a building cache is also implemented. Buildings are

generated in advance and defined as OpenGL display lists that can be stored in the building

cache. The cache employs a least recently used algorithm: recently accessed buildings are

25

Chapter 3 City Generation Research

kept in the cache while older less recently accessed items are replaced. As a result of using

the building cache, memory use is optimized and buildings can be recalled from cache for

display an order of magnitude faster than they can be generated from scratch.

Figure 20: Screen shot at street level in the Undiscovered City demo

3.3.3 Discussion

Realism: The single grid pattern does not reflect real cities where a number of patterns are

present, as a result the road network appears artificial and homogeneous. All of the buildings

appear angular and modern and are somewhat realistic but unconvincing. Simple windowed

faces are used and the buildings are not geometrically detailed.

Scale: The grid layout system can create road networks on a very large scale and is limited

only by the size of the integer based coordinates. At 232 cells wide, the size is not a practical

restriction for city generation.

Variation: The grid system is required for real-time optimization in the system. However,

the resulting road network has little variation with the only control parameter being the grid

spacing. Only a single building type is constructed and although the geometry for each

building is different the cityscape still appears homogeneous.

Input: No input maps or geo-statistical data are required.

Efficiency: Road network and building generation take place in real-time, and figures are

provided for the generation and rendering of the Undiscovered City.

26

Chapter 3 City Generation Research

Control: Grid spacing can be adjusted using short-cut keys in the application and the changes

can be viewed in real-time. The building generation process is not interactive and all

buildings are generated using a random seed created from the grid hashing technique.

Real-time: The system is designed for real-time applications and can render views of large

scale cities in real-time on commodity hardware from 2003 at interactive frame rates.

[Performance for numbers of buildings being displayed on screen: 200 buildings @60fps,

500 buildings @20fps, 1000 buildings @5fps].

3.4 L-systems

Parish and Müller present one of the most complete city generation solutions, the CityEngine,

in a paper titled Procedural Modeling of Cities [Parish and Müller 2001]. The CityEngine

consists of a suite of components including road generation, building construction and

building face creation that unite to form a pipeline for city generation. L-systems

[Lindenmayer 1968] are selected as the key technique for procedural generation in the

CityEngine. Lindenmayer-systems have traditionally been used to model natural phenomena

but are also suitable for the generation of cities due to their concise nature, computational

efficiency and data amplification properties.

3.4.1 Road Network: L-systems

L-systems, as previously discussed, have been used to model the development of plants and

branching structures. These contain some similarities in structure to road networks. The

CityEngine uses an extended form of L-systems titled Self-sensitive L-systems to construct

road networks in a manner which takes existing growth into account.

Input is taken in the form of 2D image maps. Geographical information on elevation,

vegetation and water boundaries is required, and additional socio statistical image maps can

also be included specifying information such as population density, land usage, street patterns

and maximum building heights. A road network generation application, shown in Figure 22,

is used to manage the generation of roads, and allows the operating user to specify extra

parameters such as the smoothing angle of road network edges, road width, etc. Although

only a geographical input map is required, the examples included in the paper, such as Virtual

Manhattan in Figure 26, utilize a number of different input maps.

27

Chapter 3 City Generation Research

Road generation is accomplished through the use of two rule sets: the Global Goals and the

Local Constraints. Road segments are initially plotted according to the Global Goals which

are similar to the goals that a city designer may have. These tentative plans are then refined

by the Local Constraints which reflect the practical constraints of the real world and the state

of the existing road network.

Global Goals

• There are two different types of roads: highways or major roads connect population

density centres which can be identified from a grey-scale population density map supplied

at input, small roads connect to the nearest highway.

• Streets follow some super imposed geometric pattern.

• Streets follow the path of least elevation.

Local Constraints

• Road segments are pruned to fit inside a legal area: line segments extending into water are

pruned.

• Roads are rotated to fit inside a legal area: a road to the coast bends around the coastline

like a coastal road.

• Highways are allowed to cross an illegal area of a certain distance: a highway

approaching a limited span of water will cross over it like a bridge.

• Roads segments are checked to see if they intersect with existing roads or if they come

within a certain distance of an existing road junction: Figure 21 shows how proposed road

segments are modified to satisfy the self-sensitive rules.

Figure 21: Self-sensitive road L-system [Parish and Müller 2001]

28

Chapter 3 City Generation Research

Figure 22: CityEngine GUI displaying Virtual Manhattan after 100 steps [Müller 2006].

3.4.2 Buildings: L-systems

The CityEngine constructs buildings on the road network in a series of distinct stages: define

building allotments, create building geometry and generate textured faces. To define building

allotments the CityEngine utilizes data from the previous road network generation stage.

Figure 23 outlines the stages of allotment generation. Allotments or lots are calculated by

first extracting blocks from the road network using the roads of the network as the dividing

borders. Each basic extracted block is then divided into a series of potential lots via

randomized subdivision. Lots that are too small or have no immediate street access are culled

and removed from the system. The final lots generated by the CityEngine are shown in the

right-most image of Figure 23 and appear both varied and practical.

Figure 23: Lot Division Stages [Parish and Müller 2001]

Building geometry is generated through the use of a parametric L-system. Several different

building styles are implemented including skyscrapers, commercial and residential, with each

type using a different set of L-system productions. The building type is determined from a

zone map which can be passed in as an image map input.

29

Chapter 3 City Generation Research

Figure 24: L-System building refinement from bounding box to the Empire State Building
[Müller 2006].

The initial state, or axiom, of the building L-system is a bounding box generated from the lot

footprint and a building height image map, if available. L-system operations consist of

transformations (scale and move), extrusions, branching and termination, and the use of

geometric templates for roofs, antennae, etc. L-systems allow for the addition of more

productions and provide an extensible solution. A basic level of detail implementation is

possible since each iteration of the building L-system is a refinement of a basic building

bounding box as shown above in Figure 24.

Figure 25: Building face construction [Parish and Müller 2001]

Building faces are created procedurally by generating textures using an over-laid series of

grid-like structures. Several layers of grid-like structures are used with functions that define

how the layers are combined. The functions dictate which cells from what layer are selected

to create the final face and can use conditional and statistical information to select cells. Cells

typically contain doors or windows but can contain any building face feature. The

construction of a face is shown in Figure 25. The red layer influences the selection of cells

from the green layer. The resulting face is a conditional combination of multiple layers.

30

Chapter 3 City Generation Research

Figure 26: CityEngine - Virtual Manhattan – Maya render [Parish and Müller 2001]

The CityEngine produces data that can be imported into Maya, a commercial 3D package, for

final rendering. The sample shown in Figure 26 illustrates such a rendering from Maya, in

this case a showcase of Virtual Manhattan.

Figure 27: CityEngine - Virtual Manhattan – DV/reality [Parish and Müller 2001]

A real-time implementation is available utilizing DV/reality software from Dimension.

DV/reality is a large scale visualisation tool designed to run on super computers and

distributed rendering applications. There are no real-time rendering features such as level of

detail or geometry culling discussed and from the screen-shot of DV/reality in action in

Figure 27 it is clearly evident that a reduced complexity model is being displayed. (Notice

how the buildings appear more similar to the left most image of Figure 24 in contrast to the

right).

31

Chapter 3 City Generation Research

3.4.3 Discussion

Realism: The CityEngine can create a complex and detailed road network but utilizes real

statistical data making the generative capability of the system difficult to assess. The blocks

from the road network are divided into realistic and practical lots upon which buildings can

be constructed. L-system building generation provides an effective method of generating a

realistic cityscape although the resulting buildings are basic. Several different types of

buildings including skyscrapers, commercial and residential buildings can be created and

green areas are also displayed. Overall a good visual balance is achieved with practical

positioning.

Scale: Scale does not appear to be an limiting factor for the system and is possibly restricted

only by the size of the input data maps.

Variation: A range of road networks can be created and examples of different cities are

shown including Paris – Circular, New York – Grid and San Francisco – Terrain wrapping. A

range of building function types are catered for, but only a limited range of styles are

demonstrated. In Virtual Manhattan a convincing clone of New York is shown but it may be

more difficult to generate other cities where different architectural styles are required.

Input: The minimum input required is a geography map, however all of the samples shown

utilize numerous input maps and include statistical data from real world cities. This

dependence on real-world data requires the acquisition of geo-statistical data to use the

system, which is not desirable. Also, from an evaluation point of view it is difficult to

determine which patterns are created by the L-systems and which are created as a result of the

input data. All of the samples shown utilize numerous image maps to create realistic output

like that illustrated in Figure 26.

Efficiency: Road network generation is relatively efficient. The large road network of the

Manhattan sample shown in Figure 26 is created in under 10 seconds. The next stage of

generation, the building stage, takes longer to complete. Virtual Manhattan requires

approximately 10 minutes to sub-divide the road network into lots, construct buildings and

create textured faces. It is important to note that although the generation time is documented,

the time required for Maya to render Virtual Manhattan is not disclosed, and would likely

take substantially longer than both of the previous stages combined.

32

Chapter 3 City Generation Research

Control: It is unclear how much user interaction is allowed and no interactive features are

documented. It appears that the system is controlled by writing specific rules for each region

and thus it would require advanced knowledge and expertise to use the system. Control is

also limited with the use of image maps and is not suitable for editing by a novice user.

Real-time: A real-time demonstration is available using the DV/Reality software shown in

Figure 27 that displays a simplified version of Virtual Manhattan. DV/Reality[DVR] is a

visualisation tool designed to provide real-time rendering through the use of high powered

graphics workstations and distributed rendering. No documentation on any real-time features

of the CityEngine is provided.

3.5 Agent Based Simulation

Lechner et al. [Lechner et al. 2003] apply an agent based technique to generate cities in their

solution titled CityBuilder. The system is built on the NetLogoTM platform which is a multi-

agent programmable modelling environment based on the Logo programming language and

is designed to provide users with a platform to explore emergent phenomena. The city

generation is implemented by simulating cities using a set of agents that can model specific

city entities such as developers, planning authorities and road builders. The CityBuilder

system models not only the road network and buildings, but also simulates the growth and

development of the city over time.

3.5.1 Road Network: Agent Based Simulation

Roads are created from road segments that are assembled according to a grid pattern.

Deviation from the pattern is allowed and can be specified via a parameter. A deviation value

of zero will result in a strictly uniform grid-like road network, a deviation value near one will

result in an organic like network. The interconnectivity of the network can also be altered via

constants that dictate the road density and the distance between road intersections.

Input in the form of a terrain height map is required along with a specified water level to

determine the legal area in which roads and buildings can be placed. Extra parameters such as

road density, grid spacing, and deviation from grid can be adjusted using sliders in the

interface shown in Figure 28 to alter the behaviour of the agents. Additionally users can

specify certain parameter values for specific areas by painting on the map using a brush

similar to that in a simple paint application.

33

Chapter 3 City Generation Research

Figure 28: NetLogoTM City Builder Interface [Lechner et al. 2003]

The road segments are created by two types of agents – extenders and connectors:

• Extenders roam around terrain near to existing developments to search for land that is not

serviced by the road network. Once that area of land has been discovered, it is assessed

according to road density, proximity to existing junctions, and deviation from the start

point. Roads follow parcel boundaries and try not to make large changes in elevation.

• Connectors roam over the existing road network sampling the distance taken to travel to a

point within a given radius using a breadth first search of the road network. If this

distance is too long the connector will propose a road segment between the two points, the

proposed segment is subject to the same checks as extenders.

34

Chapter 3 City Generation Research

a) b) c)

Figure 29: Example output of differing city structures: a) Gridded, b) Organic & c) Mixed
Gridded and Organic [Lechner et al. 2003]

Road networks can be viewed evolving in real-time, and the examples shown were created in

15 to 30 minutes. Figure 29 c) shows one of the main strengths of the agent based system by

effectively blending between raster and suburban road styles.

3.5.2 Buildings: Agent Based Simulation

The generation of land usage for buildings is completed via the interaction of a number of

agents but is primarily due to the work of Developer agents. Developer agents perform the

role of urban developers and have similar goals: buy land, request planning permission, build

and sell. A rectangular grid of patches represent the world and each patch may be occupied

by a building or road. Patches are grouped into parcels under the ownership of the building

agent. The building agent determines the zoning information of each parcel and tracks

attributes of the buildings.

Figure 30: Development Sequence. Yellow is residential, red is commercial, blue is
industrial. Roads are grey. [Lechner et al. 2003]

Three distinct developer types are defined: residential, commercial and industrial. All

developers seek to increase the value of their land and each developer type evaluates the

value of land differently and uses a different set of rules to complete its goals. For example:

35

Chapter 3 City Generation Research

residential developers seek land near the less busy areas of the road network in contrast to

commercial developers who look for the busiest sections of the road network. Property is

reviewed and a site is chosen. A proposal is then prepared that satisfies the clients needs and

meets the city's restrictions. The proposal must then be reviewed by the city. A developers'

proposal is only successful if it passes the city regulations and makes a net positive impact on

the community by providing a service or increasing the value of the land. After this process is

complete the developer agent starts again looking for more property. Figure 30 illustrates the

evolution of a small city with snapshot images from left to right.

The CityBuilder system creates a road network and defines land use that is then used to

determine building types but does not generate actual building geometry and textures. The

visualization of the city buildings is not a feature of the system but takes place externally in

the proprietary SimCity game engine.

3.5.3 Discussion

Realism: The road network appears realistic and has the ability to effectively transition

between road patterns, particularly between central urban areas and less dense suburban

areas. No buildings are generated, but the land usage map appears realistic resembling real

statistical data similar to that showcased in the chil.us project [UrbanLab 2006].

Scale: The output created from the system (as shown in Figure 30) is limited in scale and is

of a comparable scale to that of a village or small town rather than a city.

Variation: A realistic range of road network patterns is displayed although they appear

decidedly random. Different zones are supported with commercial zones using rigid block

like road structures and residential areas using sprawling roads. Three different land usage

and building types are defined: commercial, residential and industrial.

Input: A terrain height map and a water level input are required to determine the legal areas

in which buildings can be placed. Other input can be specified by the user through the

interactive application.

Efficiency: CityBuilder models not only the structure of a city but also its evolution and as a

result of the added complexity the algorithm is computationally intensive and time

consuming. A city of only limited scale similar to a village can be generated over a period of

36

Chapter 3 City Generation Research

approximately 15 minutes (no hardware specification stated), not including the generation of

any building geometry or textures.

Control: An innovative feature is available in the form of a paint tool that can be used to

paint parameter values on the map. Numerical parameters such as road concentration,

deviation and scale can be specified via an interactive application using the various sliders

and widgets of the GUI.

Real-time: There are no real-time considerations or even a 3D model of the city.

The system could be easily expanded but with an algorithm of high computational

complexity it is not suited for real-time procedural generation and at the moment is more

suitable for simulation applications.

3.6 Template Based Generation

Sun, Baciu et al propose an alternative approach to creating cities in their 2002 paper

Template-Based Generation of Road Networks for City Modeling. They use a collection of

simple templates and a population adaptive template [Sun et al. 2002]. The basic concept of

the system is that a road network template is applied to a geographic map as a plan and then

the roads are deformed subject to local constraints.

3.6.1 Road Network: Template Based Generation

Several inputs are required in the form of 2D image maps. A colour image map which

contains geographical information on land/water/vegetation is required. A grey-scale height

map image to specify elevation is required. A population density map is required for the

population-based template and is used to determine the varying road network density.

Population based Radial Mode Raster Mode Mixed Mode
Figure 31: Road Patterns [Sun et al. 2002]

The population-based template is implemented using a Voronoi diagram [Sun et al. 2002]. A

road system is created that is representative of the population distribution. Road networks are

37

Chapter 3 City Generation Research

suitably dense in highly populated areas and sparse in less populated areas. This is made

possible by extracting density points from the population density input map and using the

points as input sites for the Voronoi diagram. The edges or cell boundaries from the resulting

diagram are used to create the interconnected road network. The other templates use

procedural patterns to create the road network. The Raster Mode, Radial Mode and Mixed

Mode templates serve as simplistic growing patterns, with roads starting from a defined

centre point and growing in an iterative process toward the edges of a bounded area. The

Mixed Mode is simply a compound of one or more of the other basic templates.

Templates define only the desired road pattern, and just as road planners must respond to

practical constraints, so must the pattern. Roads deviate from the supplied pattern changing

direction rapidly to avoid obstacles such as water and curve gradually to avoid large changes

in elevation. Roads are created in short steps. Figure 32 shows a diagram of the process in

action. At each step the system emits several fixed length radials and selects the radial with

the least variation in elevation that is in a legal zone. In the case of a tie between two radials

the path of least deviation from the original path is chosen. The angles at which the radials

are drawn is restricted by a freedom factor, F, which limits the maximum angle of deviation

for each radial. The final shape of the road is a result of terrain deviation and the selected

pattern is followed only as strictly as the freedom factor dictates it to be followed.

Figure 32: Adaptive Roads [Sun et al. 2002]

38

Chapter 3 City Generation Research

Figure 33: Results clockwise: Population-Based Template, Radial Mode,
Raster Mode and Mixed Mode. [Sun et al. 2002]

3.6.2 Discussion

Realism: The applied template technique includes patterns found in real cities and the mixed

mode pattern helps recreate the combination of patterns also present in city road networks.

However, the results do not achieve the complexity and scale of real city road networks.

Scale: The examples shown in Figure 33 demonstrate limited complexity and are insufficient

in scale to be classed as city scale road networks.

Variation: A choice of four templates is demonstrated and each can be deformed by the

random terrain providing limited though varied output.

Input: Few inputs are required but include several image maps such as a terrain height maps,

a standard geographic map and a population density map for the population based template.

Efficiency: No information is provided on the performance of the generation process.

Control: A reliance on statistical data and no indication of any user interaction to control the

road network generation would imply that this solution is rigid and inflexible.

Real-time: No 3D implementation is shown and no performance figures are provided.

39

Chapter 3 City Generation Research

3.7 Split Grammars

The Instant Architecture solution presented by Wonka et al. focuses only on the generation of

realistic buildings through the use of a new type of formal grammar called split grammars.

These grammars are based on the concept of shape [Wonka et al. 2003].

3.7.1 Buildings: Split Grammars

Split grammars are based upon the previous research and principles of shape grammars

pioneered by Stiny [Stiny 1980]. A shape grammar is a formal grammar not unlike L-systems

but it is based on the fundamental primitive of shapes rather than letters or symbols. Rules or

productions map a shape, or a number of shapes to be be replaced by another shape, or

number of shapes. An initial set of shapes is supplied to start with, and the rules are applied in

an iterative manner.

The basic building blocks of the system, and the objects that the grammar manipulates, are

simple attributed, parametrized, labelled shapes called basic shapes. A large number of rules

or productions are required to transform the shapes. For the examples shown in the paper a

database of around 200 rules and 40 attributes was assembled. Figure 34 shows an initial state

and simple set of sample rules.

Figure 34: An example of split grammar [Wonka et al. 2003].

An initial starting state is provided and then transformed by means of an iterative process

using rules from the database. The rules split buildings into faces, faces into structural

40

WIN KS

 START

W

KS

F W

F

WIN

F FF

Chapter 3 City Generation Research

sections and structural sections into components such as windows and so on. This is shown in

Figure 34 with the end result shown of the completed derivation in Figure 35.

Figure 35: Completed derivation of the grammar in Figure 34 [Wonka et al. 2003].

Attributes assigned to shapes are propagated from the initial state down through the system.

The attributes store information about the building like its symmetry, age, use and visual

properties. These are later used to render the building but are also used to help match

transformation rules and find relevant replacements. In addition, a control grammar is applied

that can change the attributes of basic shapes in order to apply spacial design concepts, such

as setting the first floor of a building to be a shop or applying a vertical detail to a column of

shapes. The resulting building models produced by the instant architecture system contain

detailed local features such as window sills but also distinctive building features such as

vertical details on the edges of buildings.

Figure 36: Screen shot of Instant Architecture [Wonka et al. 2003].

41

Chapter 3 City Generation Research

3.7.2 Discussion

Realism: The split grammar technique produces very realistic buildings even going as far as

to effectively recreate different styles of architecture.

Scale: The examples shown in Instant Architecture are limited in scale, but serve to

demonstrate the strengths of the system by creating a small group of buildings in a town

square or centre. A high level of variation is shown in the examples but the number of

buildings is limited and is not of city scale.

Variation: Building style varies greatly helping to produce very realistic output, however it

is not clear how many different buildings types can be produced.

Input: The system requires substantial initial input with samples like those shown in Figure

34 requiring a database containing approx. 200 rules and 40 attributes. The authors report that

this took around two weeks to assemble. From this database a variety of buildings of different

styles can be created and the data can be distributed with the system, without requiring the

user to assemble their own dataset.

Efficiency: The algorithm, although complex, is quite efficient. It can create buildings of up

to 10,000 polygons in around 3 seconds on an Intel Pentium 4 at 2Ghz.

Control: No interactive editor or GUI is described, but the split grammar rules can be edited

in the database manually. This process is described as non trivial and requires a level of

expertise and experience using the split grammars. It could well be a barrier to extending the

system. There may also be constraints on the size of the system and the number of rules that

it can manage with a reservation expressed that some derived designs may not even make

sense if more rules are added.

Real-time: The detailed buildings that the system produces can be explored in real-time

however the number of buildings on display at any one time is limited. It is clearly a limit of

the system with such a high polygon count. Level of detail support would be essential to use

the system for real-time applications.

In conclusion, the Instant Architecture solution produces realistic and detailed buildings but

may require a level of expertise to operate that restricts it to an academic audience.

42

Chapter 3 City Generation Research

3.8 Conclusions

In this Chapter we have reviewed previous research into the procedural generation of cities. It

is important for us to recognise the areas that can be improved and to identify additional

goals. In evaluating the existing research we used a common set of criteria: Realism, Scale,

Variation, Inputs, Efficiency, Control and Real-time provisions. The systems adopt unique

approaches to the city generation problem and have individual strengths and weaknesses. The

highlights include: L-systems road generation, Subdivision lot creation and the interactive

user interface of the agent based approach. After completing this analysis, it can be concluded

that in general the previous research efforts can achieve a high level of variation, realism and

scale but with the exception of the agent based approach do not provide an effective method

of control.

The goals for our city generation system to improve upon this existing work are:

•Accessibility – input data such as geo-statistical data or complex architectural rules should

not be required to use the system.

• Interactivity – the system should be capable of fully autonomous generation but also

facilitate interactive control.

•Real-Time generation – for effective control over generation and to expand the the range of

applications, the system should generate a city model in near real-time speed.

The goal of our research is to create a city generation system suitable for real-time

applications that is capable of creating realistic, varied and large scale cites in an efficient

manner. Additionally it should be accessible to non-expert users and provide an effective

method of interactive control.

43

Chapter 4 Interactive City Generation Design

Chapter 4
Interactive City Generation Design

In the previous chapter we outlined and evaluated the previous research into city generation

systems. In this chapter we present the design of our city generation system. We describe the

algorithms and techniques involved in generating primary roads, secondary roads, blocks, lots

and buildings.

4.1 Overview

A key design goal of the system was that it would allow the user close control over the

generation process by means of direct manipulation of the algorithm parameters via an

accessible and intuitive visual interface. Furthermore it was regarded as crucial that the

results of these manipulations would be computed and rendered in real time so that the user

gets immediate feedback on their actions . This is what we mean when we state that Citygen

is an interactive procedural city generation system. The motivation for this is so the user can

engage with the system by moving nodes or changing parameters, see the effect immediately,

tweak again, and so on. This iterative design process can be continued as long as necessary

until the desired results are obtained.

Similar to previous research, the generation of a city model is achieved via the execution of a

number of steps [Parish and Müller 2001]. Each step may employ a different algorithm to:

facilitate user interaction, generate a feature or obtain a relevant data structure. To explain the

city generation process these steps are grouped into three main stages. Each stage

corresponds to one of the constituent city structure components, previously identified by

urban design authors [Lynch 1960][Alexander et. al. 1977] and discussed in Chapter 3.

44

Chapter 4 Interactive City Generation Design

Before describing the individual steps and algorithms applied in the city generation system,

we list the main stages and provide a general outline of our design.

1. Primary Road Network: serves as the traffic flow arteries of the city, whose

function it is to provide transport around the city and from one region to another.

2. Secondary/Neighbourhood Roads: are the roads inside the regions enclosed by

primary road network. Neighbourhood roads work by providing access for the area to

and from the primary road network. Each region may display a distinct style.

3. Building Construction: Buildings are situated and constructed on lots which are

identified from the enclosed areas within the secondary or local road network.

The essential character of a city and the boundaries of the neighbourhoods are dictated by the

pattern of the primary road network (grid-like, radial etc..) and therefore this acts as the

starting point of the generation process. The user can create, and manipulate, a graphical

representation of a primary road network. Vertices of the primary road graph are called nodes

and act as control points. They can be added, moved, deleted and so on. The roads which

connect these nodes are procedurally generated by the system, mapped to the underlying

terrain model, and rendered in real time.

Once a region is enclosed the secondary road generation process is initiated automatically.

The system contains a variety of road network patterns and the user can select which road

network pattern to apply based on the results desired (for example, grid-like or meandering

suburban roads) and assign different patterns to different parts of the city. Several pattern pre-

sets are defined for convenience and each can be easily modified to alter the efficiency,

connectivity, scale and flow of the resulting road network. Once again, the results are

computed and rendered in real time, allowing direct interactive manipulation of the process.

The final stage of generation is the construction of buildings. In order to accomplish this it is

necessary to compute building footprints onto which the buildings should be placed. This is

done by calculating all of the enclosed areas between the secondary roads and then

subdividing them into lots. The buildings are then placed within the lots and the shaders and

materials are applied to the generated geometry. During the generation process the user can

make changes to any stage and see the results of the changes propagate through in real-time.

45

Chapter 4 Interactive City Generation Design

Taking each of these generation stages in turn, we explain the operation of the system, paying

particular attention to the problems that arise, and describing the solutions and algorithms

employed to solve these problems.

4.2 Primary Road Network

Road networks are represented as undirected planar graphs and are implemented as

adjacency lists. An adjacency list contains an entry for each node and each of these entries

comprises of a list of nodes that this node is directly connected to (see Figure 37). This data

structure provides an efficient way to store, edit and perform operations on graph

representations of road networks.

Figure 37 Adjacency List Data Structure

These structures form the basis for all of our road network graphs, including both primary

and secondary roads. We use two different graphs to store data solely for the primary road

network, shown in Figure 38 and each neighbourhood region also uses an additional graph to

store data for its' own secondary road network.

The two primary road network graphs are simply termed, the high level graph, and the low

level graph. The nodes of the high level graph correspond directly to primary road

intersections and an edge between two nodes indicates that these nodes are connected

together with a primary road. So, in other words it stores the topological structure of the

primary road network. The low level graph defines the actual path each road takes across the

terrain. It will also have nodes corresponding to primary nodes but also many more nodes

between these indicating points on the terrain through which the road passes. By keeping the

46

0 1

2 3

4

5

0

1

2

3

4

5

3

3

3

0

3

4

1 2 4

52

Chapter 4 Interactive City Generation Design

high level topological road graph separate from the low level graph, we minimise the data set

for processing and provide a means for the efficient extraction of connectivity information.

Figure 38 Primary road network graphs, Yellow: High level graph, Red: Low-level graph,
Orange: Plot samples and interpolation spline.

Nodes of the high level graph function as control nodes and can be interactively manipulated

within the application in order to to adjust the topography of the primary road network. The

nodes and edges of the low level graph are then computed by the system using the sampling,

plotting and interpolation processes to construct the actual road routes through the terrain. We

call these adaptive roads. After each manipulation the low level road graph contains the data

required to render the roads. The manipulations of control nodes in the topological graph take

place in a graphical interface with a real-time display of the final adaptive roads.

4.2.1 Adaptive Roads

The concept behind adaptive roads is to fit road segments into the surrounding environment

and ensure that the roads reflect the world in which they occupy. This is accomplished by

plotting the road automatically using a sampling technique and various plotting strategies to

adapt the roads to the terrain. In practice, to use adaptive roads, the user simply positions the

source node and destination node of the road. These nodes correspond to the control nodes of

the high level graph. The system then plots the path in real-time, providing immediate

feedback and tactile control for the user to fine tune each segment. In addition constraints are

employed to maintain the integrity of the road graph. Each proposed segment is automatically

snapped to existing infrastructure whenever possible. Aside from aiding the user to rapidly

47

Chapter 4 Interactive City Generation Design

create a road graph, these constraints ensure that the user cannot create an invalid road

segment or leave the road graph in an unusable state. By fitting each road to the environment

a sense of cohesion is achieved in the resulting road network, along with increased realism

and character.

4.2.2 Sampling

Roads are plotted by starting from a source point and sampling a set of points at regular

intervals to define a set of possible paths to the destination. The road graph is stored as an

undirected graph and the plotting operation is designed to be commutative (i.e. plot(a→b) ==

plot(b→a)). Therefore the algorithm was designed to operate bidirectionally by sampling

simultaneously from both the source node and the destination node, and then finally

terminating by meeting in the middle.

Parameters are used to control the size of the samples, the number of samples taken and the

maximum deviation allowed from the target direction.

dSAMPLE : sample size

nSAMPLE : number of samples

θDEV : angle of deviation

Each control point travels a distance dSAMPLE and deviates from the direction of the destination

point less than an angle θDEV. A set of possible control points is obtained from a fan of

nSAMPLE evenly spaced samples which are evenly distributed over an arc of degree 2θDEV .

Figure 39 Road interval sampling

The road plotting process is complete when a sample is within a constant dSNAP of the

destination point, this is guaranteed by ensuring θDEV < 45o and dSNAP > dSTEP*cos(θDEV). By

48

src

dstDEV
θ

DST
d

PROGRESS
d

DST
d

Chapter 4 Interactive City Generation Design

limiting the deviance angle of the road samples the resulting roads are free to meander when

necessary but not without purpose as they are bounded to travel towards their goal.

When the sampling is complete and the path has been plotted, the selected samples are

inserted into a spline where fine grained segments can be interpolated and extracted for

insertion into the low level road graph for final rendering. A Cubic Hermite spline is used

with the Catmull-Rom approach applied to tangent generation [Paeth et al. 1995]. This spline

technique was selected because it is easy to compute and produces an exact fit to the sample

values. Approximated splines can result in the road terrain intersections.

4.2.3 Sample Selection Strategies

Different selection strategies are employed to choose the samples acquired in the sampling

process. Samples are primarily selected from the elevation difference between the sample and

the previous plot point. In some strategies additional measurements are taken into account. A

number of these different sample selection strategies are demonstrated in Figure 40 and

described below.

Figure 40 Adaptive roads in Citygen. Blue - Minimum Elevation,
 Red - Least Elevation Difference, Green - Even Elevation Difference.

4.2.3.1 Minimum Elevation Strategy

This is the most basic strategy in which the sample with the lowest elevation is selected

resulting in a road path similar to the route a river or a stream would take.

49

Chapter 4 Interactive City Generation Design

4.2.3.2 Minimum Elevation Difference

A more competent strategy than the first, this strategy avoids elevation drops or rises, and

seeks to maintain an even elevation for the complete road segment. However a problem can

occur when constructing roads between a source and destination node with a large elevation

difference. In this case the Minimum Elevation Difference strategy will avoid the required

ascent and descent until the last step when it has to join in the middle. On certain terrains this

can result in a road with two smooth road sections and a steep section joining the two.

4.2.3.3 Even Elevation Difference

To improve on the Minimum Elevation Difference strategy a technique with some more

foresight was required. This is the impetus for the Even Elevation Difference strategy which

aims to plot an even and smooth path for the road by looking ahead and re-evaluating the

elevation goal as it progresses. This strategy operates by calculating the elevation difference

between the current position and goal position. Based on the progress being made towards the

goal, the algorithm seeks to ascend or descend an even portion of total elevation for each plot

point. This strategy operates by selecting the sample with the minimum difference between

distance covered and elevation ratio, and the goal distance and elevation ratio.

MinAbs(elevationSTEP / dPROGRESS - elevationDEST / dDST)

Each sample aims to cover an even portion of the total road elevation. The resulting roads are

smooth curves that meander when necessary weaving through hilly terrain and searching for

even paths to ascend or descend large elevation differences.

4.3 Secondary Road Generation

Secondary roads service the local area within districts by providing access to and from the

primary road network. In our system, districts are the regions of the terrain enclosed by

primary roads. We call these city cells and they form the basic units upon which the

secondary road generation process operates. The generation of the secondary road network

within cells is accomplished using a growth based algorithm similar to the L-systems

technique applied extensively to the generation of natural phenomena. There are important

aspects to this process that will be described:

50

Chapter 4 Interactive City Generation Design

City Cell Extraction: How do we extract the cells from the primary road network graph?

Secondary Road Growth: How do we generate a range of road patterns in the secondary

road network within these cells?

Snap Algorithm: How do we efficiently obtain information on the intersection status and

proximity to the existing roads in the network?

4.3.1 City Cells

City cells are formed from the enclosed regions of the primary road network. These regions

can be determined by extracting the closed loops from the high level primary road graph. To

extract the cells we execute a Minimum Cycle Basis (MCB) algorithm [Eberly 2005] on the

primary road network graph and store the cell data in self contained units. Our design enables

the efficient parallel execution of road generation within cells by ensuring that all cells are

self contained and that the shared data is minimal.

The Minimum Cycle Basis is defined as the unique set of minimum cycles in a graph that all

other cycles can be constructed from. There are numerous algorithms available to compute

the MCB but few take the position of vertices into account, instead operating solely on the

structure of the graph.

Figure 41: MCB algorithm illustration

The MCB algorithm used in Citygen is that described by David Eberly in [Eberly 2005]. Our

implementation of the algorithm works by first sorting the nodes by the x location and then

extracting cell cycles in a left to right order. Cycles are extracted by using the clockwise

orientation of edges to prioritise exploration paths. As cycles are found they are marked and

51

y

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Chapter 4 Interactive City Generation Design

removed from the graph so as not to influence further searches. Filaments are ordered

sequences of vertices where the end vertices are either end points or branch points and those

in the middle have exactly two adjacent vertices. In Figure 41 the cycle {1,3,10,9,4} is first

extracted and the edges are marked cycle edges, then edge {1,3} is removed and filaments

connected to vertices 1 and 3 are removed and not stored as they are not part of any further

cycles. This brief outline is included to provide an insight into the operation of the algorithm,

for a detailed explanation of the algorithms operation see [Eberly 2005].

After the cycles and filaments have been extracted, their containing cycles are determined

and the data is grouped and then stored in a cell data structure. Each cell is self-contained and

consists of a private road graph with the boundary cycle, filament roads and a small set of

parameters to control road generation. As a result of this self contained design, it is possible

for secondary road generation to be executed efficiently in parallel. Parallel generation of

cells is currently implemented for multi-core systems running Citygen, but has a clear path to

be extended further to use GPGPU programming.

4.3.2 Secondary Road Growth

Once a city cell is created, the generation of secondary roads is initiated within it using a

growth based algorithm. The choice of using a growth based algorithm was based on success

of the prior L-system work of Prusinkiewicz on plants [Prusinkiewicz and Lindenmayer

1990] and Parish and Müller on city generation [Parish and Müller 2001]. Although our

application does not use L-systems it shares the concept of parallel growth. Our generation

algorithm is distinct in that it is computationally efficient and contains a number of

optimisations to enable it to run in real-time. The generation is flexible, producing a wide

range of output and functions by adding road segments in a parallel fashion similar to

organic growth.

Road construction begins from the bordering primary boundary roads and grows inwards in a

parallel fashion. The starting point for the initial road segment is obtained using a deviated

midpoint from a selection of the longest cell boundary sides. Once the initial segment's

position and direction are calculated they are placed on a queue for processing. The road

generation process is sensitive to existing infrastructure and new segments can connect to,

and extend, existing roads. Information about the status of a proposed segment in relation to

the road graph is obtained via an extensive snapping algorithm. This algorithm (described in

52

Chapter 4 Interactive City Generation Design

detail in section 4.3.2.1) provides information on intersections and on the proximity to

neighbouring segments and nodes. Using this information, the road growth algorithm can

make an informed decision to modify each proposed segment and join it to the existing

network, or discard it if it does not meet the criteria set by the cell control parameters. Shown

below in Figure 42 is a pseudo-code description of the algorithm.

// calculate initial road segments
for each boundaryRoad in longest(boundaryRoads)

midPoint = calculate deviated road midpoint
sourceNode = insertNode(boundaryRoad, midPoint)
roadDirection = calculate deviated boundaryRoad perpendicular
if placeSegment(sourceNode, roadDirection, ref newNode)

nodeQueue.push(newNode, roadDirection)

// process road growth
while(nodeQueue is not empty)

sourceNode = nodeQueue.front().node;
roadDirection = nodeQueue.front().direction;
nodeQueue.pop();

for ParamDegree iterations
newDirection = rotate roadDirection by i*(360o / ParamDegree)
deviate newDirection
if placeSegment(sourceNode, newDirection, ref newNode)

nodeQueue.push(newNode, newDirection)

// function to place road segment, returns true on success
placeSegment(sourceNode, roadDirection, ref newNode)

roadLength = calculate deviated ParamSegmentLength
targetPos = sourceNode.pos + (roadDirection * roadLength)

switch(snapInformation(ParamSnapSize, sourceNode, targetPos))
case: no snap event

targetNode = createNode(targetPos, roadLength)
createRoad(sourceNode, targetNode)
return true

case: road snap event
if random value is less than ParamConectivity

snapNode = insertNode(snapRoad, snapPoint)
newNode = createRoad(sourceNode, snapNode)
return true

case: node snap event
if random value is less than ParamConectivity

newNode = createRoad(sourceNode, snapNode)
return true

return false

Figure 42: Road Growth Pseudo-Code(Control Parameters shown underlined and orange)

53

Chapter 4 Interactive City Generation Design

Figure 43: Road Growth 10, 100, 300 & 1000 steps.

Each cell specifies a control parameter set which is used by the growth algorithm to control

the generation process. Example parameter sets are shown in section 5.5.1. Control

parameters used for road generation include segment size, degree, snap size and connectivity:

● Segment size controls the size of each proposed segment and hence granularity of the

neighbourhood road network. Small segment sizes result in tightly packed streets

whereas larger ones will give a more sparse road network.

● Degree controls the number of times a road branches at any given node.

● Snap size alters the distance threshold used to connect to existing infrastructure and

hence influences the efficiency of the road network.

● Connectivity changes the probability that segments will connect together thus

affecting road network flow.

A deviance parameter partners each control parameter and enables relevant noise to be

introduced by altering the parameters at each step of road generation. A seeded random

generator is used to ensure that all generation is 100% reproducible.

54

Chapter 4 Interactive City Generation Design

Using this relatively simple growth algorithm along with a concise parameter set, we can

generate a range of different road patterns which can be specified on a cell by cell basis.

These patterns range from regular raster patterns typical in modern city centres, to irregular

industrial patterns and even random meandering patterns of organic development.

Figure 44: Early road growth patterns: Raster, Industrial and Organic

4.3.3 Snap Algorithm

The snap algorithm provides information on the proximity and intersection status of a

proposed segment relative to the existing local road network graph. Proposed segments are

then refined by the road growth algorithm using this data. The snap algorithm is called

frequently by the growth algorithm and has a strong influence on road generation

performance in the system.

The snap algorithm receives the parameters: a – the root

node, b – the target position and also a specified Snap Size.

Figure 47 illustrates the resulting snap area (shaded in

grey) for the proposed segment ab, with the Snap Size

specifying the width and radius of the snap area. A Snap

Event is created for any segment that causes an intersection

or is within the defined snap area. Several events may

occur on the proposed segment ab, but each of these events

are prioritised by their distance to the root a, with the

closest events being the most important.

55

Figure 45: Snap area shaded in
grey.

b

Sn
ap

 S
ize

a

Chapter 4 Interactive City Generation Design

In order to calculate snap information for the desired snap area illustrated in Figure 47 a

number of proximity and intersection tests are required. These series of tests are

computationally intensive, but a number of optimisations have been devised that improve the

performance significantly. We will now describe these optimisations and outline the

operation of the required tests.

4.3.3.1 Extended Bounding Box Exclusion

The first step to optimising the speed of the snap algorithm is to minimise the number of

segments that require testing. This is achieved by using a technique of minimal computational

expense, in the form of a two dimensional axis-aligned bounding box test. The snap

algorithm must not only report on the intersection status of each proposed segment, but also

on the proximity to existing segments. For this reason an extended bounding box is used (see

 Figure 46). The extended bounding box is calculated by simply extending the standard

bounding box for only the proposed segment by the distance specified in the Snap Size

parameter. Using this method we can guarantee that segments which may not cause an

intersection, but may infringe on the snap area, are not excluded prematurely.

Figure 46: Extended Bounding Box Test:

The extents and position for each segment bounding box can be obtained by calculating a

segment half vector for the extents value, and then using this also to determine the midpoint

for the position value. The execution of the extended bounding box test excludes up to 90%

of road segments from further testing in a typical road network thus providing a considerable

performance improvement with little expense.

56

b

a

S
na

p
S

iz
e

Chapter 4 Interactive City Generation Design

4.3.3.2 Testing Procedure

As previously discussed a number of different proximity and intersection tests are required to

evaluate the snap area (shown in Figure 45). The snap algorithm testing procedure is

composed of three ordered tests:

1. Proposed segment to existing node proximity test.

2. Proposed segment to existing segment intersection test.

3. Proposed node to existing segment proximity test.

Figure 47: Snap Algorithm Tests: the active elements in each test are coloured in red.

These three tests define the procedure, that segments not excluded by the extended bounding

box test are subject to. Due to the frequency of which the Snap Algorithm is executed, further

optimisation is still important to maintain a high level of performance. A basic optimisation is

implemented by ordering the tests according to the priority of the snap events they can

provide. As previously discussed in section 4.3.3, the priority of a snap event is dictated by its

position relative to the root a of a proposed segment ab, with the events closer to the root

assigned the highest priority. Since only a single snap event is returned, new snap event of

lower priority can be ignored. Tests 1 & 2, the node proximity and segment intersection tests

are executed first as they can provide snap events along the full length of segment ab. In

comparison the third test, segment proximity, can only provide snap events at the target

position b, which is assigned the lowest priority. So, if a snap event occurs in either of first

two tests, then the entire series of third tests are not executed as a snap event closer to the

root, a, cannot be provided.

57

a

c
d

c
d

b

a

e

b

a

c d

b

e

Test 1: Node Proximity Test 2: Segment Intersection Test 3: Segment Proximity

Chapter 4 Interactive City Generation Design

4.3.3.3 Test 1: Node Proximity

The node proximity test checks the distance between the existing nodes in the road graph and

the proposed segment ab. To calculate the distance we use an algorithm which calculates the

distance from a point to a line [Rourke 1998]. A pseudo-code description is listed below:

// distance from point p to line ab
distanceToLine(a, b, p)

ab = b – a
ap = p - a
r = (ap).dotProduct(ab) / ab.squaredLength()
s = (ap.perpendicular()).dotProduct(ab) / ab.squaredLength()
return abs(s) * ab.length()

Figure 48: Distance from point to line pseudo-code

In addition to calculating the distance between nodes and the proposed segment, this

algorithm can also provide information on the location of each node. The values of r and s

indicate the position of each node relative to the proposed segment ab.

● r, indicates the position of a node relative along the length of ab. For example: if a

node is located at a, the r value will be 0 and if it is located at b, the r value will be 1.

Any node where 0 ≤ r ≤ 1 is located within the grey band illustrated in Figure 49.

● s, indicates the position of a node relative to the perpendicular of ab. For example: if a

node is located on the left of ab, the s value will be less than 0 and if it is located on

the right of ab, the s value will be greater than 0.

Figure 49: Node distance function scalars r & s

58

b

a

r ≤ 1

r ≥ 0

L

c

s < 0 s > 0

r ≤ lowest_r

b

a

r ≤ 1

r ≥ 0

Lr ≤ lowest_r

c

s < 0 s > 0

Chapter 4 Interactive City Generation Design

The values of r and s are used by the node proximity test to enable a number of optimisations:

The s-value is proportional to the distance that a point is located from the line segment. Once

the Snap Size is expressed in terms of s, the full distance does not need to be calculated and

the computation for node proximity tests can be reduced.

The r-value indicates the location of a node along the line ab

and is important in treating how possible snap events are

processed. Normal node proximity events require that the

condition 0 ≤ r ≤ 1 hold true. This ensures that the snap event

occurs within the line segment ab and the node is located within

the lines passing through a and b perpendicular to ab.

If the r-value exceeds 1 an additional test may be triggered. If

1 > r ≤ 1 + (Snap Size / ab.length), then the node is located in

the purple area, shown in Figure 50. In this case an additional

point to point distance test is triggered which checks whether a

snap event occurs in a circular area around b. Executing this additional distance test only

when a snap event is probable reduces the overall computation required.

Finally, because snap events are prioritised closest to the root, and the r-value indicates the

location of a node on segment ab, this value can also be used as a priority indicator. By using

the r-value as a priority indicator we remove the need for any additional computation to

determine snap event priority. If a snap event occurs, the r-value of the offending event is

stored. Since only higher priority events are significant, this new r-value sets the benchmark

for all future tests. A test is only executed if r is less than the lowest previous r and greater

than zero. For example: if a snap event occurs on the segment body ab, the r-value obtained

will lie between 0 and 1, so any snap events beyond 1 will now be irrelevant, and so the

additional distance test will not be executed.

If no snap events occur in the node proximity test the values of r and s for each node are still

stored. These values can be used by future tests to implement optimisations.

59

Figure 50: Test 1: Node
Proximity: r-values

b

a

r = 1

r = 1 + (Snap Size / ab.length)

r = 0

Chapter 4 Interactive City Generation Design

4.3.3.4 Test 2: Segment Proximity

The segment intersection test checks for intersections between existing segments in the road

graph and the proposed segment ab. Efficient execution is achieved by executing the full

segment intersection test only when an intersection has been determined probable.

The probability of an intersection is calculated by using the data obtained in Test 1. As

explained in the previous section, the node distance data defines the position of nodes relative

to the proposed segment. Therefore, if the nodes of the segment being tested contain s-values

of a different sign, then they must lie on different sides of the proposed segment and an

intersection on the line ab occurs. Also, if both node r-values place the nodes' location within

the proposed segment ab or on opposing extensions of ab, then an intersection is probable

within the bounds of the line segment ab. The application of this optimisation results in a

98% reduction of all segments intersection tests in a typical city neighbourhood cell.

Once an intersection has been determined as probable the following segment intersection test

is executed. A pseudo-code description of the algorithm is listed below [Rourke 1998].

// check for intersection between line segment ab & cd
lineIntersection(a, b, c, d, r, s)

ab = b – a
cd = d - c
denom = (ab.x * cd.y) - (ab.y * cd.x);
if(denom == 0) return false; // lines are parallel
ca = a - c
r = ((ca.y * cd.x) - (ca.x * cd.y)) / denom; // r = pos on cd
s = ((ca.y * ab.x) - (ca.x * ab.y)) / denom; // s = pos on ab
if(r == 0 && s == 0) return false; // lines are coincident
return true;

Figure 51: Distance from point to line pseudo-code

In a similar style to the operation of test 1, the distance between a snap event and the root

node is not calculated explicitly and a scalar r-value is again used as the priority indicator.

The same benefits apply in this stage. No additional computation is required to determine

snap event priority and the r-value provides another means of discarding unnecessary tests

that cannot yield an event of significant priority and lower r-value.

60

Chapter 4 Interactive City Generation Design

4.3.3.5 Test 3: Segment Proximity

The segment proximity test checks the distance between the existing segments in the road

graph and the target position defined by b. To calculate the distance from a segment to a point

the same algorithm as described in Test 1 and shown in Figure 39 is used [Rourke 1998].

This is the last test executed by the Snap Algorithm procedure and is only called if no snap

event occurred in the previous tests. This test is scheduled last because of the fact that it can

only detect snap events located at the end of the proposed ab which is assigned the lowest

priority. No special optimisations are implemented in this test and the check simply calculates

the distance between node b and every other line segment.

4.3.4 Summary of Secondary Road Generation

We have discussed City Cells, Road Growth and the Snap Algorithm. City Cells are extracted

from the primary road network and each cell maintains a local road network graph thus

reducing the relevant data set for secondary road generation within the cell. Road Growth is

achieved by using a simple growth algorithm with a minimal control parameter set. Even

though the secondary road network is divided among the City Cells the network data set is

still of a significant size. The Snap Algorithm employed by the growth algorithm is called

frequently by the growth algorithm and its efficient operation is critical for road generation

performance. The snap algorithm applies an extended bounding box test to filter the road

segments for testing. Then, three tests are implemented with a number of optimisations to

enable the snap algorithm to provide proximity and intersection information efficiently. Once

the secondary road network is complete the next stage of generation is the identification of

lots and the construction of building footprints and geometry.

4.4 Building Generation

The building construction stage of Citygen is accomplished in three stages. Firstly the

enclosed regions are extracted from the secondary road graph by applying the Minimum

Cycle Basis algorithm as described previously in Section 4.2. Secondly the lots are identified

by splitting the regions into minimal tracts or parcels of land suitable for development.

Thirdly and finally the building footprints are inset from the lot boundaries and the building

geometry is constructed and textured.

61

Chapter 4 Interactive City Generation Design

4.4.1 Blocks

Blocks represent the enclosed regions of the secondary road network. The role of the block is

to add any additional geometry such as footpaths, signposts, traffic lights or post boxes onto

the region. Currently only the footpaths are added. These footpaths are constructed by first

insetting the cell boundary by the value specified in the footpath width parameter. The

original cell boundary and the inset boundary are then combined to create an internal

boundary strip. This strip is then extruded upwards by the specified footpath height

parameter. The boundary cycle is finally toured and the length of each edge is measured. An

accumulated length value is stored in each vertex and transformed to form the UV texture

coordinates. These texture coordinates ensure that the footpath textures are tiled correctly.

4.4.1.1 Straight Skeleton Inset

The boundary consists of small segments interpolated from the primary road network and a

diverse mix of patterns generated in the secondary road network. For this reason a basic inset

operation can frequently fail. This failure results in undesirable artefacts in the inset

boundary. Hence, an algorithm was used that can take the potential problems into account.

The technique used is that of the Straight Skeleton, a concept first proposed by Aichholzer et

al. in the paper titled “A Novel Type of Skeleton for Polygons” [Aichholzer 1995].

Figure 52: Straight Skeleton [Aichholzer 1995]

A straight skeleton is defined as the union of pieces of the angular bisectors traced out by the

polygon vertices during the shrinking process [Aichholzer 1995]. During the shrinking

process two types of events can occur:

● An Edge Event, occurs when an edge shrinks to zero and the neighbouring edges

become adjacent. An example of this event is circled in green in Figure 52.

62

Chapter 4 Interactive City Generation Design

● A Split Event, occurs when an edge is split by a reflex vertex, thus dividing the whole

polygon into two. An example of this event is circled in red in Figure 52.

Following the description of the concepts by Aichholzer et al., an implementation of the

algorithm was later provided by Felkel and Obdrzalek when they published the “Straight

Skeleton Implementation” in 1998 [Felkel and Obdrzalek 1998]. This is the implementation

that our algorithm is based upon. The algorithm obtains the Straight Skeleton of any polygon

in O(nm + n log(n)) time, where n is the total number of vertices, and m is the number of

reflex vertices. This algorithm works by storing the polygon in a data structure called a Set of

circular Lists of Active Vertices, or SLAV for short. This data structure is used to store the

polygon vertices and the Straight Skeleton structure. Events are then processed in the order

they are encountered.

There are two major differences in our implementation of the inset algorithm and the

algorithm described by Felkel et al. Firstly the inset algorithm does not generate a complete

Straight Skeleton. Instead, the algorithm generates a partial skeleton by tracking the inset

progress and detecting just enough events to inset the polygon by the required amount.

Secondly the algorithm operates in O(n log(n)) time. This is achieved, not by improving the

complete algorithm, but by customising the algorithm to our application and ignoring Split

Events. During testing it was found that the Split Event rarely occurs and so can be removed

without causing significant problems. This approach has the added benefits of simplicity and

performance but has a dangerous side effect of creating potentially invalid regions. However,

efficient error checking is employed in the later stages to help correct any errors that may

occur during the inset process. The result is an inset algorithm that is balanced by creating

few errors yet remaining computationally efficient.

4.4.2 Lot Subdivision

The lot subdivision process operates on the region boundary defined in each city block. A

subdivision algorithm is applied which is based on that described by Parish et al. [2001].

Also, a number of extra features and optimisations have been implemented to extend this

technique. These features include:

● a more even and accurate method of dividing lots

● an optimisation to orientate lots perpendicular to their access roads

● the ability to process both concave and convex regions

63

Chapter 4 Interactive City Generation Design

● the addition of individual lot width and lot depth parameters

The lot subdivision process operates by measuring the regions and dividing them recursively

until all of the regions are of a size approaching the values specified in the cell control

parameters. Two cell control parameters, lot depth and lot width, along with deviation values

are used to control the subdivision process. The lot subdivision algorithm recursively splits

each region into two or more sub-regions using a split line to define each split operation.

These split lines are calculated by obtaining a perpendicular from a point near the middle of

the longest side of each region. Deviation is used to introduce noise into the subdivision

process. This application of noise results in a more natural lot distribution. The deviation

amount can be specified in the cell control parameters and a range of variation between

regular and randomised lot sizes is possible. Also, throughout the subdivision process road

access information is maintained in the region data structures. This information is used to

determine if regions have direct access to the road network. Those regions without direct

access to the road network are not considered suitable for building development, and are

discarded, or used for green space.

Figure 53: Illustration of the Lot Subdivision Algorithm

Shown above in Figure 53 is an example of the lot subdivision algorithm dividing a regular

convex polygon typical of an inner city block. The red points indicate the split points used to

define the split line shown as dashed lines. The light grey regions shown in the last stage

64

1 2 3

4 5 6

Chapter 4 Interactive City Generation Design

represent the lots that do not have direct road access and are excluded. For more detail on the

the lot subdivision algorithm, a pseudo-code description is shown below in Figure 54.

subdivideLots(blockRegion)
regionQueue.push(blockRegion)

while(regionQueue is not empty)
region = regionQueue.front()

// calc the longest road edge and split size
longestEdge = region.getLongestRoad()
if(longestSide.length < lotWidth)

// calc the longest non-road edge and split size
longestEdge = region.getLongestNonRoad()
if(longestSide.length < lotDepth)

// if lot is small enough, add completed region
outputRegions.add(region)
regionQueue.pop()
continue

else
splitSize = lotDepth

else
splitSize = lotWidth

// calculate the split points
sp1 = calcSplitPoint(longestEdge, splitSize, lotDeviance)
sp2 = sp1 + longestEdge.perpendicular()

// split and process the new regions
newRegions = SplitRegion(region, sp1, sp2)
regionQueue.pop();
foreach(Region r in newRegions)

if(r.hasRoadAccess())
regionQueue.push(r) // add to processing queue

else
delete r // discard region

return outputRegions

Figure 54: Lot Subdivision Algorithm pseudo-code

4.4.2.1 Even and Accurate Lot Subdivision

Using a binary split operation limits the accuracy to the nearest power of two. By taking the

target size into account we can offset the division point for more even and accurate divisions

for odd sized lots. The function called to calculate the deviated mid point for the longest edge

is of key importance to the generation of evenly and accurately sized lots. Although a lot

deviance parameter can be specified in the cell control parameters, the ability of the original

65

Chapter 4 Interactive City Generation Design

lot subdivision algorithm to deliver evenly sized lots is restricted. When testing the initial

version of the lot subdivision we quickly found that by using a deviated midpoint the

accuracy of the lot subdivision was limited to the nearest power of two.

Figure 55: Split Point Calculation

In the example shown above the region is 60 units wide and 20 units deep. The desired lot

width and lot depth is 20 units and the deviance is 0. The desired result is obvious, three lots

should be obtained. However, if the midpoint is used as the first split point in the region, four

lots, not three lots will be returned. To solve this problem we take the measurement of the

longest side and determine the number of splits that may be required. Using this number we

can then select the middle-most fraction for an accurate split. Although it is not evident in the

example above, it is very important that the middle-most split fraction is used, otherwise thin

slices are cut from large regions and lot distribution is compromised. This feature is

necessary for cells which specify low lot deviance values and enables accurate and evenly

sized lots to be obtained. For cells with high deviance values the application of noise is not

negatively affected by the implementation of this feature. Shown below is a short snippet of

pseudo-code that demonstrates how this feature can be implemented.

calcSplitPoint(longestEdge, splitSize, lotDeviance)

factor = Round(longestEdge.length / splitSize)
fraction = 1/factor
midPosition = Round(factor/2) * fraction

// calculate longest edge vector src → dst
longestEdgeVec = longestEdge.dstPos() - longestEdge.srcPos()

return longestEdge.srcPos() + longestEdgeVec *
(midPosition + (lotDeviance * (srandom() - 0.5) * fraction))

Figure 56: Lot Subdivision Algorithm pseudo-code

66

midpoint fraction midpoint

Chapter 4 Interactive City Generation Design

4.4.2.2 Perpendicular Lot Orientation

Another modification was required to improve the orientation of lots obtained from irregular

or complex regions. The original lot division algorithm worked fine for rectangular regions,

however, when the algorithm was tested on suburban road networks the resulting lots were

angular and irregular. To combat this and provide more realistic lots for suburban networks a

modification was made to the lot division process in which division was prioritised along

sides with road access. This modification can be seen in Figure 54 where the function

getLongestRoad is invoked before the function getLongestNonRoad. As a result of this

simple modification almost all lots are now oriented perpendicular to their access roads. This

more closely reflects the conditions found in the real world and improves the quality and

realism of lots in suburban regions without affecting other regions negatively.

4.4.2.3 Concave and Convex Lot Subdivision

The last and most important improvement to the lot subdivision algorithm is the removal of

the restriction for regions to be convex. By requiring that all regions be convex the lot

subdivision process is limited to operating on regular blocks, like those found in Manhattan.

However, most regions are not convex. Suburban, industrial or any district with filament

roads can not be processed using the basic subdivision algorithm. The solution was to

develop a more complex split algorithm capable of splitting both concave and convex regions

into two or more subregions.

Regions or lots are represented as graphs of directed

edges. These directed edge graphs are implemented in a

circular linked list. Using this data structure each of the

vertex neighbours are easily accessible and additional

data such as road access information and process

variables can be attached to each edge.

The intersections between the boundary edges and the

split line are calculated in two stages: The first stage

determines the position of each vertex relative to the

perpendicular of the split line using the same technique as

described in section 4.2.3.3. In the second stage, edges

with a vertex on each side of the line, are deemed to have

67

0 1

2 3

4 5

671011

89

0 1

3 4

6 7

910

1213

1516

2 5 8111417

Chapter 4 Interactive City Generation Design

an intersection present. The position of the intersections

and their relative locations along the split line are then

calculated and inserted into the regions circular list and

also into a list for intersection vertices.

The list of intersection vertices are then sorted by the

their relative position on the split line. Each alternate

edge between the ordered intersection vertices is

considered part of the region as per Jordans Curve

Theorem (these edges are marked in green in the

illustration shown on the left). For each of these pairs a

bridge function is invoked to modify the structure of the

region into several constituent regions.

The bridge function creates two additional vertices and

two new edges for each intersection pair. It is important

that the bridge function modifies the graph so that each of

the original intersection edges is assigned to a different

sub region. Finally the sub regions are extracted by

cycling through the connected edges for each intersection

edge. Since a sub-region may contain more than one

intersection edge, edges are marked as visited to avoid

any duplication.

Figure 57: Region Split Algorithm

The original version of algorithm was developed using vectors and indices instead of the

circular list. However, there were performance implications, even though the size of each

vector was determined in advance and the memory was allocated in advance, the resulting

copy time for each region was still noticeable. After further research a useful description of

an algorithm was found in Graphic Gems V [Paeth et al. 1995]. This new revision of the

algorithm, as shown in Figure 58, is based on the clipping algorithm described in chapter II.3

of Graphic Gems V. While the algorithm is not identical, important concepts including the

bridge function and the circular list were instrumental in improving the performance of lot

subdivision. On the next page a pseudo-code listing of the split region code is provided for

those who may require more detail on the algorithms' operation.

68

4 5 61 2 3

4

5

6

1

2

3

Chapter 4 Interactive City Generation Design

splitRegion(region, a, b)
ab = b - a
Lsq = ab.squaredLength()
foreach(edge in region)

edge.s = (-ac.z * ab.x + ac.x * ab.z) / Lsq

foreach(edge in region)
if((edge.s > 0 && edge.next().s <= 0)

|| (edge.s <= 0 && edge.next().s > 0))

cd = edge.dstPos() - edge.srcPos()
denom = (ab.x * cd.z) - (ab.z * cd.x)
ca = a - edge.srcPos()
r = ((ca.z * cd.x) - (ca.x * cd.z)) / denom // loc on ab
s = ((ca.z * ab.x) - (ca.x * ab.z)) / denom // loc on cd

if(edge.s == 0) // if split on src
intersectingEdge = curr

else if(edge.next().s == 0) // if split on dst
intersectingEdge = curr.next()

else
// intersection point calc using cd, splitline ab is flat
intersectingEdge = region.insert(edge,edge.srcPos()+(s*cd))

intersectingEdge.s = r
createdEdges.add(d)

// sort the created list by location on ab
sort(createdEdges, sortDirectedEdgeByS)

// mark edges as unvisited
foreach(edge in region) edge.s = 0

// bridge intersection pairs
for(i=0; i<createdEdges.size(); i+=2)

DirectedEdge::bridge(created[i], created[i+1])

// finally extract the new regions
foreach(createdEdge in createdEdge)

edge = createdEdge
skipDuplicate = false
do

if (edge.s > 0)
skipDuplicate = true
break

edge.s = 1 // mark edge as visited
edge = edge.next() // advance to next edge

while(edge != createdEdge)
if(!skipDuplicate) outputRegions.add(new Region(createdEdge))

return outputRegions
Figure 58: Lot Subdivision Algorithm pseudo-code

69

Chapter 4 Interactive City Generation Design

4.4.3 Building Construction

Buildings are generated on the lots created by the lot subdivision process. Hints attached to

each neighbourhood as part of the control parameter set advise the building generation

algorithm on what class of building to be generated and how it should be positioned on the

lot. The actual building placement is achieved using a combination of polygon insetting and

shape fitting. Finally the building geometry is constructed by performing an extrude

operation on the footprint and materials are applied to simulate additional geometric detail.

4.4.3.1 Building Footprints

Building generation begins with the positioning of the building footprint within each lot.

Different strategies are applied to obtain the footprint based on the type of development that

is indicated by the cell control parameters. The footprints are calculated using the inset

algorithm described in section 4.4.1.1. Road access information is required by some

development types to inset the road access sides by a different amount to the others. To

implement this feature the Straight Skeleton Inset function has been extended to support a

weighted inset routine, sometimes referred to as a Weighted Straight Skeleton or Camp

Skeleton. This extension is implemented by calculating the angle bisector taking edge weights

into account. In this case the optimisation applied by Felkel et al.[Felkel and Obdrzalek

1998] to limit the execution of the Split Event (see section 4.4.1.1 for a definition) test is no

longer applicable. In a non-linear inset, used by the Suburban example below, a different set

of vertices can cause a Split Event and not just the reflex vertices. The illustration below

shows the inset operations for a number of different building types.

Figure 59: Building Type Lot Insets

As shown in Figure 59, the down-town type buildings attempt to make maximum use of lot

space and apply zero inset while the suburban buildings retreat in from the road access sides

and also from each other in order to make room for a garden area. The industrial buildings

70

Down-town Industrial Suburban

Chapter 4 Interactive City Generation Design

retreat in from their boundaries to emulate the green space found in industrial estates. After

the inset has been performed the industrial building footprints and down-town building

footprints are finalized. However, the suburban building does not use an irregular shaped

footprint and instead attempts to fit a regular shape such as a rectangle inside the inset region.

Figure 60: Building Type Lot Insets

This simple shape fitting algorithm operates by first selecting a primary road access side and

obtaining a centre point. Two lines are then calculated parallel to the primary road edge and

offset from the centre point. Using these lines intersection tests are executed and the

minimum distances between the intersections and the centre point are obtained. Using these

minimum distance values a proportional rectangle is constructed as the final footprint.

4.4.3.2 Building Geometry

Once the footprint has been calculated, building geometry is then generated by simply

extruding the footprint upwards to produce a solid object. The height of each building is

determined from the building height parameter, an accompanying deviance parameter is used

to add controlled noise to the building height values.

Figure 61: Primitive Building Geometry

71

65%

Chapter 4 Interactive City Generation Design

The basic building shapes that are generated by extruding the footprints are primitive.

However, these shapes can then be used as a starting point for a shape grammar

transformation or any other procedural building technique. In our implementation, we try to

improve the level of detail and visual quality of the cityscape by applying advanced materials

with shaders to simulate additional geometry.

4.4.3.3 Building Materials and Shaders

In order to improve the appearance of basic building meshes, materials are applied that

employ shaders to add more detail. One of the main advantages of this approach is that the

shaders can utilize the graphics hardware and not the main processor to simulate the

additional geometry. Thus, the appearance of more complex meshes is provided without

incurring the processing time of generating and rendering the actual geometry.

Several techniques are available to simulate additional geometry, three examples are shown

in Figure 62. The first technique is normal mapping, which is a standard technique frequently

applied in computer graphics. It succeeds bump mapping by using a colour texture to define

the normals instead of using a grey-scale texture to perturb the normals. The three colour

components in the texture are used to define the x, y and z components of the surface

normals. These normals define the direction each surface is facing, and are then used by the

lighting system to compute shading. The second technique shown in Figure 62 is parallax

mapping [Kaneko 2001]. Parallax refers to the effect where the apparent position of an object

changes with the observation point. This technique overcomes the flat appearance of normal

mapping by displacing the texture coordinates to give an appearance of depth in the final

rendered object.

Figure 62: Three techniques to simulate additional geometry

72

Chapter 4 Interactive City Generation Design

The third technique shown in Figure 62 is called relief mapping [Policarpo 2005], and this is

the technique applied to our buildings. Relief mapping overcomes the weaknesses of the

other techniques by providing realistic shading, parallax effects, occlusion and self-

shadowing. Occlusion is the effect where an object is masked, hidden or occluded from view

by an object that is closer to the observation point. An example of occlusion can be seen in

Figure 62 where the far side of the pyramid is occluded on the top side of the right most cube.

Here the far side of the pyramid is not visible as it is hidden or occluded by the near sides.

The effects of self-shadowing can also be seen on the front side of the same cube. Here the

detailed objects on the face cast shadows across the face just if they were implemented with

geometry.

Figure 63: Relief Mapping: Height-map, Normal-map, Diffuse-map and Output

The textures required to implement relief mapping are shown in Figure 63 above. Relief

mapping uses a grey-scale texture, or the alpha value of a colour texture to define a height-

field in addition to using a colour texture for the normal map. The relief mapping technique

defines a shader to compute an efficient ray to height-field intersection algorithm which

executes on the GPU [Policarpo 2005]. More details on this algorithm can be found in “Real-

Time Relief Mapping on Arbitrary Polygonal Surfaces”.

Each relief mapping texture set is used to define a building tile. These building tiles contain

information in their material description to specify the input textures and the desired

dimensions for their application. The tiles are then applied to the building geometry by

generating texture coordinates with a best fit algorithm. This algorithm aims to match the

tiles dimensions without splitting or dividing a tile unnecessarily. By using this system a

range of different sized geometric building units can be defined and applied to any building

while scale and proportion are maintained.

73

Chapter 4 Interactive City Generation Design

The process used to create the texture sets for the building tiles is discussed in the next

chapter, in section 5.6. A screen-shot of city buildings with a range of building geometry tiles

can be viewed in the results chapter. To summarize, this approach provides a method to

define building geometry in tile form and the application of this technique results in

significantly improved detail in the final rendered cityscapes.

4.5 Summary

In this chapter we have discussed the concepts and algorithms that have been applied in our

design. The three main stages of city generation: primary road networks, secondary road

networks and building generation have been outlined. The primary road network stage

described the adjacency list data structure, the adaptive roads and the sampling strategies

available. Secondary road network generation encompassed the extraction of cells via the

minimum cycle basis algorithm, a description of the growth algorithm and a detailed look at

the snap algorithm which is critical to performance. The final stage, building generation,

explained the operation of the lot subdivision algorithm and outlined the improvements made.

Finally the algorithm used to obtain building footprints was explained and the geometry tile

system that is powered by the shaders of the building materials was described. In the next

chapter we show how these concepts and algorithms were developed into an interactive

procedural city generation system, titled Citygen.

74

Chapter 5 Citygen Implementation

Chapter 5
Citygen Implementation

In this chapter we describe our implementation for the procedural city generation project. A

solution has been developed in the form of a standalone application titled Citygen. We

introduce the user interface and provide an outline of all the major interface components

describing their functionality and role in the system. Furthermore an explanation is included

of how the application can be used, the tools that it provides and how these tools can be

applied to quickly and easily construct a cityscape.

The application has been built from scratch using C++ and takes advantage of a number of

key technologies to fulfil the design goals. Several libraries and standards help to create an

accessible, interactive application that can achieve real-time city generation, and fit into the

development pipeline of the graphics industry. In addition to fulfilling the design goals, the

careful choice of libraries have provided added benefits and these are also discussed. An

outline into each of these libraries and standards is included alongside the reasoning for their

selection.

5.1 An Introduction to the Citygen UI

The Citygen application is designed for accessibility and ease of use. It provides a unified

workspace for procedural city generation and the user interface controls are integrated

together in a single application incorporating a built-in game engine view. Individual

interface components such as the toolbars, property lists and game engine render view can be

moved, docked or separated from the main window in a similar style to commercial graphics

application or IDEs. The main components of the workspace are illustrated in Figure 64.

75

Chapter 5 Citygen Implementation

Figure 64: Citygen User Interface

Menu and Toolbar

Citygen contains a Standard Toolbar, a View Mode Toolbar, an Edit Mode Toolbar and an

Edit Tools Toolbar. The menu has a copy of the toolbar functions with the addition of

infrequently used tools such as Options and Export. The Standard Toolbar contains the

generic functions commonly found in most desktop applications: New File, Open File, Save

and Help. The remaining toolbars contain application specific functions and their operation

and behaviour is detailed in the next sections.

View Mode Toolbar

The View Mode Toolbar can be used to select what elements of the city are displayed in the

Game Engine Render View. A number of views are available:

● View Primary – displays only primary roads.

● View Roads – displays primary roads and secondary roads.

● View All – displays primary roads, secondary road and buildings.

The view mode can be changed at any point in the generation process and is independent of

the edit mode. This allows the user to see how their changes affect each layer of city

76

Chapter 5 Citygen Implementation

generation. Figure 65, displayed below, illustrates the effect of different view modes in action

on the Game Engine Render View.

Figure 65: View Modes from left to right: View Primary, View Roads and View All.

Edit Mode Toolbar

The Edit Mode Toolbar is used to change the current edit mode of the application. Four

distinct edit modes are available: View, Node, Road and Cell. By selecting a different edit

mode the user changes the operational mode of the application. For example, selecting Node

Edit displays the Node Edit Tools and the Node Property Inspector. The user can then select

and modify nodes in the Game Engine Render View. Road Edit Mode and Cell Edit Mode

provide similar functionality for roads and cells. A more detailed description of the operation

of individual edit modes is provided in sections 5.2, 5.3 and 5.4.

Property Inspector

The property inspector is used to view and modify the properties of city scene objects.

Properties that can be edited include basic coordinates, display preferences and most

importantly the control parameters for generation.

Output Log

The output log provides extra information targeted towards more technical users. This extra

technical information contains specific details on the city model currently being generated.

Some examples of this information are the format of the textures loaded, the generation

times, and the polygon and vertex counts of the different city components.

77

Chapter 5 Citygen Implementation

5.2 View Edit

This mode is used to change the view of the city presented to the user in the Game Engine

Render View. The view system in Citygen follows the same design goals as the rest of the

application and is designed to be accessible and easy to use. The camera model used

replicates the functionality found in mainstream 3D authoring tools and should be familiar to

any user with experience in computer graphics.

Figure 66: Camera Model and Cursor Bitmaps

● Translation operations are performed relative to the target plane so that the user can

effectively grab and move the screen. Translation magnitude is accurately calculated

to keep the object in focus aligned with the mouse cursor as the user drags the screen.

The correct translation magnitude is calculated via a mouse ray plane intersection.

● Rotation operations are made around the target point. The user can rotate the camera

horizontally and vertically at the same time, using a mouse drag action and relative

screen coordinates to control the rotation.

● Zoom operations are activated using either a mouse drag action or the scroll wheel.

The zoom magnitude is determined relative to the distance between the camera and

target point, in order to have rapid zooming at distance, and fine-grained control

nearer.

Cursor bitmaps, shown in Figure 66, were created using vector graphics in the Fireworks

application and are similar in style to those found in mainstream authoring tools. The cursors

are used in Citygen to indicate the current camera manipulation being performed.

78

Chapter 5 Citygen Implementation

5.3 Node Edit

The Citygen application provides a user interface to rapidly construct the primary road

network using a simple and intuitive process. A point and click system is employed that

enables users to quickly create the series of nodes and adaptive roads that constitute the

primary road network.

Figure 67: Node Edit Workspace

Nodes are represented in the application by red control points which can be selected, moved,

modified and deleted using the point-and-click interface. A label is assigned to each node

with the instance count used as a default value, custom text can also be assigned by the user

via the Property Inspector. Nodes are displayed according to their status: normal nodes are

drawn in red, highlighted nodes are surrounded with a yellow disc and selected nodes are

drawn in yellow.

Three node specific tools are provided in the toolbar: Select Node, Add Node and Delete

Node. To add a node to the system the user simply selects the Add Node tool and points and

clicks on an area of the terrain and a node is then constructed and displayed at that point. If

the user would like to modify the position of an existing node the user can activate the Select

Node tool and then click on any node and simply drag it to the desired location to reposition

it. In the event that specific and exact world coordinates are required for a node the

application can facilitate this process also. Using the node property inspector, displayed on

the left in Figure 67, the user can specify the exact world coordinates by typing the desired

position into the x and z properties of the property inspector. The y property is the height

coordinate and is determined automatically by plotting the 2D coordinate to a point on the

surface of the terrain. To delete a node, a similar point-and-click system is employed. The

79

Chapter 5 Citygen Implementation

user simply selects the Delete Node tool and points and clicks near an existing node on the

terrain.

5.3.1 Add Node - Chain Tool

The add node tool contains an additional mode of operation that is designed to facilitate the

construction of roads. This mode provides a method to add roads quickly using the least

number of clicks possible.

Figure 68: Chain Tool – Plough of roads in 9 clicks

The road construction mode of the Add Node tool is activated by clicking on an existing node

with the Add Node tool selected, then a road is automatically generated and displayed

between the selected node and a proposed node, positioned underneath the mouse cursor. As

the user moves the cursor around the screen they can preview this new road and choose to

add it by simply pointing and clicking on the terrain. A new node is then added, along with a

connecting road identical to the preview road that was displayed. To add further roads, this

process does not have to be initiated again, as the selected node is advanced to the newly

added node, allowing the user to create a long string of nodes all connected by roads. In

addition, this tool is not limited to creating singular strings of nodes, but can also be used to

create loops and connect to existing infrastructure. When connecting a road to existing nodes,

the selected node is still advanced, but in this case it is advanced to the target node, and the

user can continue to add a road per click on the terrain.

5.3.2 Validity Checking

Validity checking is an important part of the Citygen system and is applied to maintain the

validity of the road network graph and to assist the user in the rapid construction of the

80

Chapter 5 Citygen Implementation

primary road network. Just like the secondary road generation, where the growth algorithms'

actions are refined to create a valid road network, here the users actions are refined.

Road network graphs are planar so their edges cannot overlap and all road to road

intersections require a node to model each and every junction. Citygen provides real-time

validity checking, so as the user moves the cursor, or proposes a change to the network, their

actions are refined in real-time by the validity checking mechanisms. This enables the user to

see a live view of how their actions will effect the road graph and what modifications shall be

made by the system to ensure the integrity of the road graph. For example, in the event that a

user wishes to create a road that overlaps with another road, the system will automatically

detect the intersection event, display the corrected road graph, and insert a node in the

existing road at the offending intersection point upon commit.

Figure 69: Validity Checking: Node Snap, Road Intersection and Road Snap. The red road
illustrates the users proposed action and green road shows the corrected version.

In addition to maintaining the integrity of the road network, the validity checking algorithms

assist the user in the rapid creation of nodes and roads by snapping automatically to existing

infrastructure. As the user selects nodes, and connects nodes with roads, the cursor will

automatically snap to the closest existing node within a defined snap distance. With the aid of

this technique users can select nodes and add roads without having to worry about the exact

position of the cursor or without requiring precise selections. Also users can, with a single

action, propose invalid or intersecting roads, view the corrected modifications in real-time

and click to accept these as additions to the road network.

5.4 Road Edit

The Road Tools provide a means to add, modify and delete roads in the primary road

network. Primary roads in Citygen are adaptive and change to fit the environment in which

they are placed. The road Property Inspector provides access to the parameters that control

81

Chapter 5 Citygen Implementation

the adaptive road generation process and these can be modified with their effect viewable

instantaneously.

Figure 70: Road Edit Workspace

Roads are rendered with textured geometry in Citygen and appear identically in the exported

model that the application creates. Junction plates are constructed separately as part of the

node object but are displayed in the road edit mode. A point-and-click interface is used again

to select, modify, delete and add roads. Selected roads are indicated by being displayed in a

shade of yellow.

Three road specific tools are displayed in the toolbar: Select Road, Add Road and Delete

Road. In order to create a new road the user selects the Add Road tool and clicks on a pair of

nodes a and b sequentially to create a new road from node a to node b. In the event that a

road cannot be constructed, for instance if the road intersects with a number of other existing

roads, the user is presented with a warning message that explains the reason why their desired

road was not constructed. The Select Road tool functions by allowing the user to select any

road with a single click and then the properties for that road are loaded and displayed in the

road Property Inspector dialogue. The Delete Road tool provides a means for the user to

delete individual roads from the road network graph. The operation of the tool is again very

simple, to delete a road the user simply selects the Delete Road tool and clicks on the road to

be deleted.

5.4.1 Adaptive Road Control Properties

The road Property Inspector displays the adaptive road generation properties for the currently

selected road and also the default generation properties for new roads when a road is not

selected. The road Property Inspector consist of 7 properties in two categories, Adaptive

82

Chapter 5 Citygen Implementation

Road Parameters and Display Options. Figure 71 shows the road property inspector in

action.

The Adaptive Road Parameters category lists the control

parameters involved in the generation of adaptive roads. The

Algorithm property provides a drop down list to select the

active road generation algorithm, a description of which is

included in the previous chapter in section 4.2. The remaining

properties in this category control the behaviour of the

sampling for road generation and specify the width of the

road. Figure 72, which is displayed below, shows the effect of

these control parameters on adaptive road generation.

Figure 72: Adaptive Road Control Parameters

The Display Options category allows the user to change the display of each road and how it

is rendered. The Segment Draw Size property directly effects the smoothness of the road

geometry by defining the size of road segments to be interpolated from the road path curve.

The last parameter, View Plot Debug Info, can be used to enable a debug overlay for each

road. The debug overlay is illustrated in Figure 72 and displays the samples used by the

adaptive road generation algorithm.

5.5 Cell Edit

In Citygen, City Cells represent the neighbourhoods or districts of the city and are formed

from the enclosed regions of the primary road network. Inside each City Cell the secondary

road network is generated using a growth based algorithm. The Cell Edit mode provides an

accessible interface in which the user can simply select cells and view their generation

83

Figure 71: Road Property
Inspector

Chapter 5 Citygen Implementation

control parameters. Control parameters for both the secondary road generation and building

construction are displayed in the Property Inspector.

Figure 73: Cell Edit Workspace

Cell Edit mode, in contrast to the other edit modes, does not provide a bar of specialized

tools. Instead a single tool, the Cell Select tool, is all that is required. No “add cell” or “delete

cell” tools are needed as cells are created via the construction of the primary road network

whenever a region is enclosed. The boundaries of cells are automatically extracted from the

primary road network using the Minimum Cycle Basis (MCB) algorithm described in

section 4.2.1. Cell Select operates in a similar fashion to the other tools with a point-and-click

interface, if a user clicks within the boundary of a cell it will be selected. Selected cells are

indicated by a yellow outline displayed around the cell boundary as shown in Figure 73.

5.5.1 Cell Generation Properties

The cell Property Inspector provides an editable view of the generation control parameters. If

no cells are currently selected, the Property Inspector displays the default property set, which

can be modified to change the initial property values used for new cells. Upon selection of a

cell, its parameters are read and loaded into the Property Inspector, where they can be viewed

and modified. Three categories of properties are listed. Presets contains a property to load a

predefined set of generation properties that encapsulate a distinctive style or type of

neighbourhood. Generation Parameters controls the operation of the secondary road growth

algorithm and building construction. Lastly Display Options provides a facility to display

additional debug information.`

84

Chapter 5 Citygen Implementation

Generation Parameters is the core category of the City Cell

Property Inspector and contains all of the control parameters

required for generation. The Seed property is passed to the

random generator in the generation process and ensures that

the results are consistently reproducible. Five properties and

their accompanying deviance values are used to control the

secondary road growth algorithm. They are Segment Size,

Degree, Snap Size, Road Width and Connectivity. Two

properties are used to control Lot Subdivision: Lot Size and

Lot Deviance. Three properties govern the construction of

buildings: Building Height, Building Deviance and Building

Hint. Any modification made to the control parameters

updates the Game Engine Render View in real-time giving

the user an element of close control over the generation process. A detailed outline of the

function and effect of these parameters is documented in the previous chapter.

The Display Options category of the cell property inspector

contains a single property to enable a debug overlay. This

debug overlay displays additional generation information

such as block boundaries, lot boundaries and lot subdivision

lines. The display of these lines can be useful for gaining an

insight into the operation of the lot subdivision algorithm and

can help the user obtain their desired effect from the

generation process.

The Presets category contains the Load Preset property that allows the user to load a pre-

defined set of values into the generation parameters with one click. These presets are an

added convenience for the user and can act as a starting point or template for the generation

of a number of styles of secondary road networks and different types of neighbourhoods.

Once the parameters have been loaded they can be modified and tailored to fit the users

specific requirements. It is also important to note that each Preset does not output a single

map, but is seeded and has 232 combinations like every other parameter set. Figure 76

displays three distinct presets, each with their parameter sets and an accompanying

screenshot.

85

Figure 74: Cell Property
Inspector

Figure 75: Cell Debug View

Chapter 5 Citygen Implementation

Manhattan
Segment Size: 5 ± 20%
Degree: 4 ± 1%
Snap Size: 2.4 ± 10%
Road Width: 0.45
Connectivity: 1
Building Height: 1.7 ± 70%
Lot Size: 0.7 ± 40%

Suburbia
Segment Size: 2.4 ± 30%
Degree: 18 ± 60%
Snap Size: 2 ± 10%
Road Width: 0.2
Connectivity: 0.05
Building Height: 0.3 ± 10%
Lot Size: 0.5 ± 50%

Industrial
Segment Size: 3 ± 10%
Degree: 4 ± 1%
Snap Size: 2 ± 10%
Road Width: 0.3
Connectivity: 0.05
Building Height: 0.6 ± 30%
Lot Size: 1.2 ± 60%

Figure 76: Preset Examples

86

Chapter 5 Citygen Implementation

5.6 Building Tiles

The building tiles define the material which is used to simulate additional geometry on

building meshes. In this section we will show how the building tiles are implemented and

provide a short outline of the steps required to build a tile. Each title consists of a height map,

a normal map, a diffuse colour map and a material description.

The first step is to obtain a photo of the building that we wish to model. In order to create

good textures for the building it is important that the photo is taken as straight-on as possible.

The next step is to model the building geometry. One approach is to create a height map by

shading the areas of the photo in shades of grey that correspond to the displacement of each

area. However, I found that this approach is error prone and it is more reliable to apply the

image as a projective texture and then model the building using a 3D authoring tool.

Figure 77: Building Tile Authoring

After modelling we have a complete geometric mesh of the building. The vertices can then be

tweaked so that the façade angles are limited to 80 degrees, this avoid artefacts occurring.

Finally the building side can be exported from 3DMax using the plug-in provided by

Policarpo et al. [Policarpo 2005]. The texture that is produced contains both the height and

normal map. This exported texture is included with the diffuse texture in a material script

87

Chapter 5 Citygen Implementation

which specifies the desired dimensions of the tile and completes our definition of the building

tile. These tiles are then applied to the buildings to achieve significantly improved detail.

5.7 Integrated Game Engine: OGRE

Citygen includes an integrated game engine view within the application so that all cities can

be generated in a WYSIWYG environment. OGRE [OGRE 2007] was selected for use in

Citygen because of its clean design and comprehensive graphics feature-set which is

comparable to even the most recent commercial game engines. It is frequently used in the

education and research sectors as the engine of choice for rapidly developing 3D applications.

OGRE features of particular relevance to Citygen include:

● Efficient and versatile rendering engine with OpenGL support.

● Powerful material system that defines materials outside of code and supports multi-

texturing, multi-pass blending, vertex and fragment programs.

● Numerous mesh data formats accepted, vertex buffers, index buffers, vertex

declarations and buffer mappings.

● Flexible scene management with the option of custom scene managers for complete

control over scene organisation

● Clean object-oriented design, well-documented API and an active community.

● Cross-platform: Windows, Linux & OS X.

OGRE is officially defined as a rendering engine (Object-oriented Graphic Rendering

Engine) and not a game engine. However, game engine components not found in the standard

OGRE package can be easily integrated into the system using a series of add-ons or plug-ins.

Examples of available add-on components include audio, control, scripting and physics to

name but a few. OGRE is built on a well tested and mature code-base and has been applied in

a number of commercial game titles.

Figure 78: OGRE game screenshots: Ankh, Building World & Pacific Storm

88

Chapter 5 Citygen Implementation

5.8 Graph Structures: BGL (Boost Graph Library)

A number of graphs are employed within the Citygen application to store road network data

and perform graph algorithms to extract enclosed regions, adjacency information and graph

traits. The Boost Graph Library[Boost 2007] is used to serve as a standardized generic

interface for traversing the road network graphs and is independent of the graph data

structures used. Hence the algorithms that have been developed as part of Citygen can be

applied to any graph that implements the standard BGL interface.

In addition to providing a standardised interface for graph traversal the BGL library is also

used in Citygen because it implements several types of graph data structures in efficient and

well-tested code. The main graph data structure used by the Citygen application is the

adjacency list model. This template can be specialised further by specifying the STL

container components used for both edges and vertices. In the case of Citygen road networks:

● Vertices are stored in the <list> container to ensure efficient iterator access and

quick insertion/deletion at the cost of some additional storage space.

● Edges in the road network graph are undirected and are stored in the <set> container

so that parallel or duplicate edges can be excluded with little overhead and the

consistency of the road network graph can be maintained.

The RoadGraph class models road networks in the Citygen application and defines a simple

API to modify and perform algorithms on the network. Several RoadGraph instances are

used in the application: the primary high-level graph, the primary low-level graph and

additionally a graph is used for each cell. Each visual entity, which is an item displayed in the

world, such as nodes, roads, cells, buildings etc., is associated with one or more graphs. The

associations are structured so that each entity can use its private member data to access

neighbours and related objects in the city scene. For example: it is the role of nodes to create

junction plates and for this to be achieved each node must access its parent graph and extract

the connected roads and the position of adjacent nodes. After the construction of junctions,

roads must access their source and target nodes to obtain the correct coordinates to join to the

junction plate. Numerous relationships are modelled in the Citygen application and the

RoadGraph is used to provide relationship information for all entities.

89

Chapter 5 Citygen Implementation

5.9 GUI Platform: wxWidgets

Citygen is designed from the ground up to be a portable application and support users

running different platforms and operating systems such as Windows, Linux and OS X.

Several user interface libraries exist to enable cross platform development, the wxWidgets

[wxWidgets 2007] library was chosen because of a number of distinct advantages it provides:

● Native look and feel: wxWidgets creates user interfaces that perfectly match the look

and feel of the host operating system by utilizing the native APIs.

● Comprehensive GUI widgets: wxWidgets contains basic widgets such as menus,

toolbars, buttons and sliders but also provides advanced controls like Property Grids.

● Advanced features: customisable workspaces are an example of an advanced feature

that can be supported easily with little effort using the wxWidgets library.

Cross-platform user interface libraries generally operate by emulating the display of interface

components, resulting in applications that appear out-of-place and inconsistent with the look

of the host operating system. wxWidgets is different in that its applications are always

consistent with the look and feel of their host operating system. This is accomplished by not

emulating the user interface components within the library but instead translating the API

calls to use the native user interface libraries. wxWidgets provides a single API that acts as a

thin layer of abstraction over the native APIs. In practice this means that a wxWidgets

application running on Windows uses the Win32 API, on Linux uses the GTK+ API and on

OS X uses the Cocoa API. By using wxWidgets cross-platform applications can be developed

without expert knowledge of any specific platform and a single unified code base can be used

for all platforms.

Figure 79: wxWidgets Native Look and Feel: Windows, Linux & OS X

90

Chapter 5 Citygen Implementation

5.10 Accessible Export: COLLADA

The main goal of the procedural city generation project was to create a tool that could help

developers and artists working on computer graphics projects create large urban

environments. In order to accomplish this goal it was important that the Citygen application

could fit into the development pipelines used in the computer graphics industry. A wide range

of digital content creation tools are used within the industry and it is not feasible or practical

to provide a plug-in, or export file formats, for each tool. For this reason a unified exchange

format was selected that could be read by all tools. The COLLADA(COLLAborative Design

Activity) [COLLADA 2007] specification was chosen as the format to achieve this.

COLLADA defines an XML database schema that enables 3-D authoring applications to

freely exchange digital assets without loss of information, enabling multiple software

packages to be combined into extremely powerful tool chains. [COLLADA 2007]

COLLADA is an XML format original devised by Sony Computer Entertainment as a digital

asset exchange format. Since then a number of major graphics developers such as Alias,

Discreet and SoftImage have joined the consortium to extend and refine the specifications

adding support for advanced materials and physics. The COLLADA schema, now at revision

1.4.1, is well supported by most major graphics tools and game engines including 3DS Max,

Maya, Blender, SoftImage XSI, Deep Exploration and the Unreal Engine 3.0. Citygen

provides complete COLLADA export for generated city models and supports the export of all

geometry, materials and textures.

5.11 Summary

In this chapter we have described our implementation for interactive procedural city

generation. The user interface was introduced and an outline of the major interface

components was provided. We have shown how the tools in Citygen can be used to create the

constituent components of a city-scape. Also, information on the technologies used in the

application were documented, along with the reasons for their selection. In the next chapter,

we display the results of the system. This encompasses: studying the cityscapes generated,

analysing the performance, and determining the accessibility of the generated models.

91

Chapter 6 City Generation Results

Chapter 6
City Generation Results

In this chapter we analyse the results of our procedural city generation system. The primary

road editing facility is demonstrated by recreating predominant city patterns from real-world

cities. The adaptive road system is then illustrated showing the construction of several

common road types, each of which are mapped to the terrain. Next, the distinctive patterns of

the secondary road networks are illustrated with samples, results and the associated

generation parameters. Then, the lot subdivision and building tile results are displayed. The

overall performance of the system is then analysed as we break down the computation times

into stage times, comparing the performance with and without optimisations. Following that,

we gather some statistics on the 3D authoring tools used in the graphics industry and estimate

the percentage of users that can fit Citygen into their work-flow. Finally, we show a selection

of screen-shots of generated cities. We begin with the primary road editing facility.

6.1 Primary Road Network

In Citygen, the construction of the primary road network is facilitated using the interactive

graph editor, thus enabling users to incorporate any number of high level patterns into their

cities. The primary road network is critical to determining city structure and plays an

important role in influencing our impression of city character. Previously, we discussed in

Chapter 3 how roads correspond to Paths and Edges, and how these roads form the defining

boundaries for each neighbourhood or district. We also discussed how the primary road

network affects our perception of the city, and in particular how these road networks define

the predominant patterns that we use to identify distinctive city areas. The examples we used

to illustrate this point were maps of the concentric ring roads that loop around the city centre

92

Chapter 6 City Generation Results

of Milan and the radial spokes surrounding the the Arc de Triomphe in Paris. We can now

revisit these examples and see how the user can specify the key characteristics of a cityscape

by recreating these patterns in Citygen.

Milan – Concentric Rings Paris – Radial Spokes
Figure 80: Predominant Pattern in Existing Cities (Satellite)

Citygen is designed to provide the user with interactive control over road generation so input

data is not required. However, satellite images or road maps can be useful as a form of

reference to observe and select desirable patterns, which can then be incorporated into our

generated cities. The following images, shown in Figure 81 and Figure 82, illustrate how

these patterns can be accurately reproduced in procedural cities.

Figure 81: Milan Primary Network in Citygen

93

Chapter 6 City Generation Results

Figure 81 illustrates the concentric ring road pattern of Milan applied to an area of

approximately 25Km2. Even though the secondary road network is significantly different

from the original, the cityscape can still be easily recognised as that of Milan, due to the

predominance of the same high level patterns in the primary road network.

Figure 82: Paris Primary Network in Citygen

Figure 82 shows the radial spoke pattern of Paris applied to a much smaller area of around

1.5Km2. Again the pattern is clearly identifiable, and shows how the patterns of the primary

road network have a strong influence on the perceived character of a city.

By recreating familiar patterns from established cities we have demonstrated that the

interactive editor is capable of creating accurate and distinct patterns. The primary road

network has been identified as the most predominant and recognisable feature of a cityscape.

Using our system, any number of high level patterns can be mixed and matched, applied to

the primary road graph and incorporated into the final cityscape. In the next section we look

at adaptive roads, a technique which helps the user rapidly build the primary road network.

94

Chapter 6 City Generation Results

6.2 Adaptive Primary Roads

Adaptive roads form an important part of our procedural generation system. The path that

roads follow is rarely an exact straight line. Roads in the real world are subject to

environmental constraints and these constraints affect the route each road takes. For an author

to create realistic roads: the constraints of the environment must be taken into consideration,

the effect of each constraint must be evaluated and a suitable path for the road must be

plotted. With regard to city generation applications this would mean that each road would

need to be manually planned and plotted, therefore making the construction of roads a time

consuming task. For this reason the adaptive roads system was developed to enable the rapid

construction of the primary road network.

Adaptive roads react to same stimulus as real roads and adapt to fit the surrounding

environment. Roads are plotted to the contours of the terrain and are controlled using a

concise set of parameters and a number of strategies. The adaptive roads are generated

instantly and the route can be previewed in real-time as the user moves the cursor. Effective

parametrization is achieved which results in road control parameters that directly relate to the

road properties. Two key parameters are deviation and sample size. The deviation parameter

affects the roads range of movement and the sample size parameter affects the roads

granularity of movement. By simply varying these two parameters we can capture the

behaviour of a wide range of roads and use the obtained values to recreate similar roads in

our generated cities.

Figure 83: Major Road : Sample Size 640m, Sample Deviance 15º

95

Chapter 6 City Generation Results

Major roads such as motorways or highways are designed for high speed transit and as a

result of this have no sharp corners or tight turns. Motorways can be recreated in Citygen by

using a high sample size value with low deviance, the interpolation system employed in the

application results in a road with smooth and gentle curves.

Figure 84: Primary Road : Sample Size 260m, Sample Deviance 25º

Primary roads that encounter uneven terrain must navigate a smooth path through while

maintaining minimal elevation changes. Figure 84 demonstrates how a road of this type

follows the terrain with substantially more curvature than the motorway using a moderate

sample size and lenient or high deviance value.

Figure 85: Inner City Road : Sample Size 90m, Sample Deviance 22º

Inner city roads do not have to cope with high speed traffic and as a result can meander

moderately to weave through the city. The direction of the road can change quite quickly due

to the overlapping transport paths and frequent intersections. To abstract the behaviour of

96

Chapter 6 City Generation Results

inner city roads a low sample size value is used and a moderate to low deviation value.

For many inner city routes, especially in planned cities, these is little or no deviation present.

In this section we have illustrated how a range of road types can be automatically generated

using the adaptive road system. The road sampling and plotting algorithms ensure that roads

react to the surrounding terrain and fit into the environment. Road networks can be created

quickly and easily. A flexible generation algorithm means a range of road types can be

created. Effective parametrisation enables the user to accurately match the road requirements.

In the next section we will look at generation of the secondary road network.

6.3 Secondary Road Growth

In Citygen, secondary road generation operates on the regions enclosed by the primary road

network. The secondary roads perform the job of servicing the enclosed land area by

providing access to and from the primary road network. Each enclosed region represents a

neighbourhood or district of the city, and each can display a distinct style and character. A

growth algorithm is employed to construct the road segments inside each cell. This forms the

secondary road network. A parameter set is defined for each cell to control the generation

process and thus the style of output generated. We will now take a selection of secondary

road patterns and illustrate how they can be generated using the Citygen application.

Figure 86: Manhattan (Grid) Street Pattern

The Manhattan pattern is formed from a grid of streets and is the most simple pattern to

recreate. To create a grid pattern a degree value of four is specified with minimal degree

deviation and segment deviation values. The road segment size and aspect ratio can be

customised to modify the block size and block aspect for each instance. The aspect parameter

allows directional bias to be implemented without affecting the generation of other patterns.

97

Chapter 6 City Generation Results

Figure 87: Industrial Street Pattern

The industrial zones are not as highly connected as the grid networks and function to provide

efficient road access to the industrial buildings. Through traffic is not a goal of these areas,

but is enabled since for industrial areas it is important to have easy access to the primary road

network. For these reasons a much lower connectivity value is used in the generation

parameters. Higher deviance values for segment length and junction degree are applied to add

some noise into the resulting patterns. A large segment size is used to facilitate the large

block area required by industrial buildings.

Figure 88: Suburban Street Pattern

Suburban areas use tree like road networks with almost all roads terminating at dead ends.

Although the planned layout of suburban areas is difficult for the growth algorithm to

emulate the general structure can be recreated accurately. The most significant parameters to

set when creating suburban districts are degree deviance, snap size and connectivity. The

connectivity of a suburban area is low by design, traffic through the neighbourhood is

discouraged since these areas are often residential. Degree deviance is set to a relatively high

value to enable the road growth to meander throughout the neighbourhood. A high snap size

value is also required to ensure even road distribution and to contain untidy growth.

98

Chapter 6 City Generation Results

In this section we have illustrated how a range of neighbourhood styles can be generated

using the road growth algorithm. The influential parameters that define each style type were

outlined, and the results of the secondary road generation were shown side by side with real

world examples. The results show that the road growth algorithm enables the user to generate

a wide range of road networks. Also, real-world road networks can be matched by similar

procedural networks using only a few specific parameters.

6.4 Building Generation

Building generation operates on the enclosed land areas of the secondary road network. The

lot subdivision process divides these areas into lots that are suitable for building construction.

Once the lots have been identified the construction of buildings can begin. Basic buildings

are constructed by extruding the building footprints upwards. Building tiles, which simulate

detailed geometry by using relief mapping, are then applied to the final mesh. We first look at

the results of the improved lot subdivision algorithm and assess the effect of our extensions.

Figure 89: Manhattan Lot Subdivision – Lots Displayed in Debug View

The original lot subdivision technique described by Parish and Müller [2001] worked well on

regular grid-like road networks similar to those found in Manhattan. However, the

implementation of the algorithm in Citygen differs from the original in that it contains a

number of extensions. These extensions include: more even and accurate method of lot

99

Chapter 6 City Generation Results

division, the prioritisation of division along road access sides, the ability to process both

concave and convex regions and the addition of individual lot width and depth parameters.

Even though these changes alter the behaviour of the process, we found that the generation of

lots in regular grid networks like Manhattan was not adversely affected. In fact, the lot width

and depth parameters were beneficial in creating lots which match those found in Manhattan.

The motivation for the extensions was to extend the application of the lot division algorithm

to a wider range of road networks. Networks like the suburban type, shown below in Figure

90, are significantly different from the regular grid-like networks. Here, the suburban

generation process can frequently cause irregular, angular and concave regions. The lot

subdivision algorithm needs to accommodate these concave regions and generate regular

rectangular lots from irregular input. Prioritising the division along road access sides and

supporting concave regions are essential to the success of the algorithm. The extensions to lot

subdivision result in a substantial reduction of irregular lots and provide a feasible method of

obtaining lots from suburban and other irregular road networks.

Figure 90: Suburban Lot Subdivision – Lots Displayed in Debug View

We now look at the results of the building tiles. After the lot subdivision process is complete

the building footprints are calculated and basic geometric primitives are extruded. The

resulting geometry is then textured with building tiles which simulate additional geometry to

provide more realism and detail. Shown below in Figure 91, is a selection of building tiles

100

Chapter 6 City Generation Results

applied to basic cuboid geometry. The top row shows the building with relief mapping

enabled and the bottom row shows the buildings without relief mapping enabled.

Figure 91: A selection of Building Tiles

Looking at the images above, the individual benefits that relief mapping provides can be

observed. Namely, the added depth, parallax, occlusion and shadowing. Even though the flat

textures contain some emphasised shading the relief mapping technique is distinctly superior

and provides a higher level of detail and realism. In this section we have discussed the

effectiveness of the lot subdivision extensions and shown the benefits of relief mapping on

building tiles. In the next section we outline the general performance of our system and

discuss the effect of the algorithms and optimisations on performance.

101

Chapter 6 City Generation Results

6.5 Performance

Performance is an important factor in our city generation system. Interactive control is one of

our main objectives and in order to provide this feature we aimed to generate and render the

city at interactive frame rates. This goal has been achieved, with the average city cell or

neighbourhood now requiring only 60ms to generate and render. This means that the user can

modify a city cell and view the results instantly. The generation of a complete city requires a

little more time, around 1.6 seconds to create a test city of area 16Km2 with 15,000 roads and

57,000 buildings. In this section we show the effects of the optimisations on the city

generation times and briefly describe the most influential cases.

A performance summary of Citygen can be viewed in the table below. The generation times

for each stage, with and without optimisations, are listed for comparison. The effects of the

most influential optimisations are marked with a key, this character key points to a specific

note for detail on each optimisation (see the captions below the table).

Generation Stage Standard Execution Time Optimised Execution Time

Primary Junctions 43.6ms 18.8ms†

Primary Roads 175ms 22ms†

Secondary Road Generation 771.8ms 149.8ms*

Lot and Building Generation 2050.7ms 415.6ms‡

Geometry Mesh Build 4468.6ms 1009.2ms†

Total 7509.7ms 1615.4ms†*‡

Figure 92: Performance Table: Samples averaged from a test run of five executed on Intel
Core Duo 2.33GHz with an ATI FireGL V5200 (similar to X1600).

Optimisation Keys: * Snap Algorithm Optimisations, ‡ Efficient Split Algorithm and † Inline
Tangent Vector Calculations.

The Secondary Road Generation stage employs the snap algorithm extensively. However, the

snap algorithm is an expensive operation and a number of optimisations were developed to

improve its performance, a description of these optimisations can be found in section 4.3.3.

In Figure 92, we can see the effect of these optimisations on Secondary Road Generation.

102

Chapter 6 City Generation Results

Here a five fold increase in performance over the standard snap algorithm can be observed

when using the optimised snap algorithm. Clearly this performance benefit justifies the

development and application of these the snap algorithm optimisations.

The Lot and Building Generation stage frequently calls the split algorithm. This algorithm is

critical to the efficiency of lot subdivision. The operation of this algorithm is described in

section 4.4.2. Improvements to the algorithm were made so that less memory allocations

occur. This was achieved by using circular list structures in place of STL vectors. The

performance increase that occurred with this optimisation was significant, the system can

now generate lots and buildings at a rate four times faster than that previously experienced.

Tangent Vector Calculations are computed for every piece of geometry constructed. The

tangent vectors are required by almost all of the advanced materials including relief mapping.

The OGRE game engine, used in Citygen, supports the automated generation of tangent

vectors. However, shared vertices were not supported, and as a result the entire geometry

mesh needed to be relocated and re-indexed in order to generate the tangent vectors. This is a

costly operation and should be avoided if at all possible. The solution used was to the

calculate the tangent vectors in-line as the faces are added to the mesh, thus avoiding the cost

of relocation and re-indexing. This optimisation resulted in improved performance across

several stages.

In this section we have shown the effects of our optimisations on overall city generation and

on the individual generation stages. We have demonstrated that the optimisations developed

provide a substantial performance boost to the system and are an essential component to

enabling the short generation times that make interactive control possible. In the next section

we will look at the integration of Citygen into industry standard development processes.

6.6 Development Integration

One the goals outlined for Citygen was to ensure that the system could easily slot into the

development pipeline of the computer graphics industry. In the Implementation Chapter the

accessible interface suitable for novice users was described. A camera model and point-and-

click interface similar to those found in contemporary 3D authoring tools is used to make the

application a familiar environment for those with experience in content authoring. In this

section we analyse the usage data of 3D authoring tools and determine which tools can be

used easily alongside the Citygen application.

103

Chapter 6 City Generation Results

 Jan 2000
 June 2000

 Aug 2000
 Dec 2000

 Mar 2001
 May 2001

 Aug 2001
 Jan 2002

 Jan 2002
 Jun 2003

 Feb 2004

0%

10%

20%
30%

40%

50%

60%
70%

80%
90%

100%

Other
Houdini
Newtek Lightwave
SoftImage XSI
3D Studio Max
Al ias | Wavefront Maya

Figure 93: 3D Graphics Tools: Market Share

Figure 93 illustrates the market share of the leading 3D authoring tools. This data is acquired

over a four year period from the specifications of job positions in the computer graphics

industry. The table shown in Figure 94 displays which leading products support COLLADA,

the export format used by Citygen. Using these two sets of data we can estimate the

percentage of workers in the computer graphics industry that can use Citygen without any

changes to their tool set or work practices. The result is a respectable 85%, the remaining

15% of workers can still use Citygen but may require an additional tool such as Deep

Exploration to convert the model data to their own native format.

Product Market Share Built-in Plug-in

Maya 42% -- ColladaMaya

3D Studio Max 17.9% -- ColladaMax

SoftImage XSI 12% Yes --

Lightwave 9.1% -- LWCOLLADA

Houdini 4.7% Yes --

Figure 94: 3D Graphics Tools: Market Share

6.7 Analysis

In order to evaluate the results of the procedural city generation system we revisit the critical

framework that was outlined in section 3.2.1. The same set of criteria that were used to

evaluate existing city generation solutions are now applied to review the results of Citygen.

Realism – Citygen can accurately reproduce many complex and detailed road patterns that

are found in modern cities. This is demonstrated in sections 6.2 – 6.5 where system output is

104

Chapter 6 City Generation Results

compared to real world examples. High level patterns are recreated accurately and quickly

using the interactive road network editing facilities. Adaptive roads plot the route of each

road to realistically fit to the terrain. Secondary road generation provides near identical

matches for the Manhattan and Industrial examples. The Suburban example attains a very

close resemblance but the planned nature of suburban road networks can pose some problems

for the organic-like road growth algorithm. The Lot Subdivision stage identifies realistic lots

without the limitations of shape of accuracy found in previous work. Buildings are basic but

are designed to define structure for further generation. Overall the system is capable of

generating cityscapes that closely match real-world examples with only a few weaknesses.

Scale – The city generation system is designed to scale. The graph algorithms partition the

city into self-contained cells. This limits the negative effects of large scale networks on the

efficiency of the generation process. True large-scale cityscapes covering an area of 16Km2

with 15,000 roads and 57,000 buildings were tested in the performance section of 6.5 and did

not pose any problems for the system.

Variation – The interactive road editor allows the user to specify any conceivable pattern in

the high level road network. Using the parameter based secondary road generation a wide

range of road networks can be constructed, varying from the rigid blocks of Manhattan to

sprawling Suburbia. Building variety is limited to basic extrusions. Overall the system can

produce a wide variety of road patterns and is unlimited in the style of output possible.

Input – Minimal input data is required by the system. No geo-statistical data or land usage

maps are required. The only input needed is a terrain height map to place the city on. Users

are responsible for defining the initial high level road network but this stage can be

completed quickly using the interactive tools.

Efficiency – Citygen partitions the road network into cells, thus reducing the data-set for

intersection tests. Several optimisations were also implemented, the snap algorithm discussed

in section 4.3.3 proved to be the most influential. Only 1.6 seconds is required to create a test

city of area 16Km2 with 15,000 roads and 57,000 buildings. See Figure 92 for more details.

Control – An interactive road network editor is used for the primary road network. Real-time

feedback and an intuitive interface provide a tactile system of control for the user. Using this

system any high level road network pattern can be implemented quickly and easily. The

adaptive road system is controlled via a few simple parameters and an overlay can be toggled

105

Chapter 6 City Generation Results

to view the sampling points and arcs. Secondary roads growth is again parameter based,

although several pre-sets can be selected for frequently used patterns. To summarize the

system provides an intuitive form of control for the high level road network but other

generation stages are only controllable via input parameters.

Real-time – Complete cityscapes can be generated in near real-time, taking approximately

1.6 seconds. Individual neighbourhoods take significantly less time, at around 60ms per cell.

Each cell batches geometry resulting in efficient rendering of the cityscape. Currently the

system can be explored easily in real-time, running at around 50fps using the hardware

configuration and cityscape described in Figure 92.

6.8 Final Output

In this final section of the results chapter we display a selection of screen-shots taken from

the Citygen application. The city model shown in the screenshots contains over 82,000

buildings and 18,000 roads. The complete generation time for the city including adaptive

roads, secondary roads and buildings is only 1.7 seconds using the same hardware as

specified in Figure 92. In the next chapter, we shall provide some conclusions on the

research.

Figure 95: City Screenshot 1

106

Chapter 6 City Generation Results

Figure 96: City Screenshot 2

Figure 97: City Screenshot 3

107

Chapter 7 Conclusions

Chapter 7
Conclusions

In this chapter we conclude the thesis by reviewing our initial aims and outlining the

achievements of the project. There is also a project assessment, a discussion of future

research and finally a review of the applications with a number of conclusions.

7.1 Summary

This thesis began with the context, motivation and scope of the research. The content creation

problem facing the computer graphics industry was discussed and the field of procedural

techniques was introduced as a potential solution. The additional benefits of procedural

generation in computer graphics were also outlined. Furthermore the scope of the project was

refined to the application of procedural techniques to construct an urban environment model

suitable for real-time rendering. Next, an overview into the field of procedural techniques

was included. This described the properties of procedural techniques and identified the key

properties of effective procedural generation algorithms. To gain an insight into what makes

procedural techniques effective, additional studies focused on the operation and results of

successful established procedural algorithms such as Fractals, Perlin Noise, L-Systems and

Tiling. A review of the existing research on procedural city generation was carried out and

each approach was evaluated against a standard set of criteria: Realism, Scale, Variation,

Input, Efficiency, Control and Real-time optimisations. The approaches reviewed included

the real-time system by Greuter et al.[2003], the L-systems based CityEngine by Parish and

Müller [2001] and the agent based approach by Lechner et. al.[2004]. From the analysis the

relative strengths and weaknesses of each approach was identified. It was determined that no

system fulfilled the aims of our research and thus further validated the unique goals of our

108

Chapter 7 Conclusions

project. Following the review, the design of our system – Citygen – was presented. The

process of city generation was decomposed into its constituent components. Primary roads

were constructed using adaptive roads. Secondary roads were generated using a growth based

algorithm in combination with a snap algorithm. A lot subdivision algorithm was applied to

identify lots and basic buildings were constructed with advanced materials to simulate more

geometry. The implementation of an accessible, interactive and real-time application titled

Citygen was described. All major components and their role in the system were outlined. Key

technologies such as the built-in game engine, graph data structures, GUI libraries and

geometry export were also discussed. In the results section we demonstrated the system in

action, showing: the construction of the primary road network, the application of adaptive

roads and the generation of secondary road patterns. We also provided a review of system

performance, measuring the effectiveness of the optimisations developed along the way, and

followed with a short feature calculating the accessibility of the system to those in the

graphics industry.

7.2 Achievements

Before assessing the major achievements of the project we first revisit the original goals as

defined in Chapter 1. That was to develop a city generation system capable of producing the

required geometry, materials and textures to model a cityscape. Specifically the system

should procedurally generate a city model that is:

● Realistic – of similar appearance to a real city, in particular the road networks must

reproduce or emulate a number of distinct styles found in real city road networks.

● Large Scale – the size of the generated model must be comparable to that of an actual

city, not a town or small urban settlement. A minimum building count of 50,000.

● Detailed – a level of detail comparable to that of a modern games title: with geometry

suitable for real-time rendering but detailed enough to maintain realism.

In addition, the system should operate so that it is:

● Accessible: easy to use for novices, no reliance on expertise and minimal input data.

● Interactive: automatic but can facilitate manual and tactile control.

● Real-time: minimal generation time for an expansive range of applications.

109

Chapter 7 Conclusions

Finally, some practical objectives were to:

● Develop a portable multi-platform application that can serve as a complete integrated

workspace for procedural city generation.

● Implement a system that can be rapidly developed and easily extended.

● Export data easily to fit into the pipeline of tools used in the graphics industry.

After reviewing the original goals we can now assess our system with these in mind.

The system applies a number of techniques to generate the geometry, materials and textures

needed for a complete city model. Adaptive roads emulate the problems that difficult terrains

can cause and, like the real world, force route plans to be compromised and fit to the

environment. The result is a more realistic road path that introduces characteristics from the

terrain and ensures that roads fit cohesively into the world. Secondary road generation

operates in the enclosed regions of the main road network. This has been identified by several

authors as a key boundary between neighbourhoods which can each possess their own

distinctive style[Alexander et. al. 1977][Lynch 1960]. A growth based algorithm is employed

to generate roads within the regions and a parameters sets are used to recreate several distinct

styles taken from the real world. By using an editable primary road network with adaptive

roads and self contained cells, characteristics can be specified on a high level for a large

area. As a result, it is easy for users to create large-scale urban areas with distinct

characteristics without the need to micro-manage finer details. Citygen enables the generation

of urban geometry on a true city scale. Geometry is created for a limited number of assets

such as roads, footpaths and buildings. This geometry is more basic than that found in the

most modern games but it is suitable for real-time rendering and enables the display of the

full city at interactive frame rates. Extra detail is accomplished via the use of advanced

materials that simulate additional geometry. The most up-to-date techniques are used, some

of which are only present in the most recent gaming titles. Techniques like relief mapping,

parallax occlusion mapping and displacement mapping help increase the visual fidelity of the

output model. These techniques applied in Citygen enable the procedural generation of a

realistic, large-scale and detail city model.

The city generation system is operated via a unified interface with a live 3D view of the

world. Any novice can use the point and click interface which is designed in a similar fashion

110

Chapter 7 Conclusions

to mainstream 3D authoring tools. No input data, such as geo-statistical data or image maps

are required. The primary road network can be constructed rapidly using an simple and

intuitive interface that features Auto-snap. This mechanism aids the user by suggesting

proposed actions and enforcing the integrity constraints of the graph. All neighbourhoods are

automatically detected and the parameters for each cell can be viewed in the property

inspector. Users can modify parameters and view live updates. An adjacency and dependency

model is used so that only the portions of the city that need updating are regenerated after

each modification. Using this system, any component of the city can be modified at any stage

in the generation process and the changes are propagated through in real-time maintaining

interactivity. Road network nodes can be grabbed and manipulated with real-time generation

results, thus enabling an element of tactile control for the user. The generation algorithms

applied in the system are designed to be computationally efficient and exploit multiple

threads of execution. This effort is required to produce near real-time speeds for complete

city generation and expands the range of applications for the system. All of these features

combine to provide an accessible, interactive and real-time city generation system.

Citygen is a single application that serves as an integrated workspace to operate procedural

city generation. A built-in game engine is included and the system has been tested on

multiple platforms. Rapid development was accomplished by using established libraries and

extensibility is guaranteed by adhering to open standards and transparent file formats. Export

data fits easily into the graphics industry pipeline by using a popular open exchange format.

7.3 Project Assessment

This project accomplished its initial aims by completing the development of a procedural city

generation system. The core aims of generating a city model that is realistic, large-scale and

detailed were fulfilled. The success in each of these particular criteria is difficult to

determine. Realism, has been analysed in the results section and it can be seen that a number

of different patterns are represented and panoramic views over the cities appear realistic.

Scale, is not in question, the system can easily generate cities with over 50,000 buildings and

there is no hard limit on the maximum number it can handle. The only core aim left in doubt

is that of detail. Evaluating detail can be subjective but if we look back to the original aims

we can see that the detail level should be 'comparable to that of a modern games title'. Using

this as a guide we can conclude that the city models generated by Citygen are on par with

111

Chapter 7 Conclusions

many modern titles and superior to some genres such as flight simulators, etc. But, we must

acknowledge that our solution could have produced better results to equal the detail found in

every genre of modern gaming.

The operation of our system and implementation of the standalone city generation tool,

Citygen, have been most successful. The resulting application meets the original aims, it is an

accessible, interactive and real-time tool that can enable developers to pick it up immediately

and begin creating their own cities. The system that has been developed is cross-platform and

employs open XML standards to import and export data thus ensuring extension is possible.

7.4 Future Work

In this section, a number of areas for improvement and future research are outlined.

Probability distribution

Random generators are used as part of the road growth and lot subdivision algorithms. The

random values acquired are used to apply the deviation values that accompany parameters.

Currently a uniform probability distribution is used in the Citygen application. This is

adequate for many applications but it is not ideally suited to recreating the complex patterns

found in cityscapes. A simple and obvious example of a parameter that can benefit from a

different probability distribution is the 'building height' parameter. In a real city it is evident

that most buildings are of a similar height with only a few skyscrapers peeking out. If a

normal distribution was used then this trait and many others could be replicated in the

Citygen application.

Additionally, if specialised distributions were acquired from city statistical data then the

generation system would be able to more accurately model real cityscapes with little

additional computation required. Any code changes required to the Citygen application are

trivial as the system has been developed to use the boost random generator libraries which

support a number of built-in probability distributions and allow the use of custom

distributions [Boost 2007]. However, more research is required to find and analyse statistical

data from existing cites that can be used to validate this theory.

112

Chapter 7 Conclusions

GPU Execution

In the Citygen system the generation of a cityscape is accomplished in stages via a hierarchy

of components. Throughout the city generation process, many of the components can be

computed in parallel. The most substantial generation time is spent within the city cells. Each

of these cells are designed as independent work units that can be allocated and shared among

a number of threads to exploit multi-core processors. Currently the number of threads used in

the application is limited to the number of cores on the host machine. It is no secret that

increased parallelism and multiple cores are the predominant design trends in advancing

CPU processing power.

Additionally, immediate gains can be made by exploited an existing piece of parallel

programmable hardware present in any gaming computer. With GPGPU (General Purpose

GPU) programming it is possible to offload massive, specialised, parallel computation

workloads onto the GPU for efficient calculation [Trendall and Stewart 2000]. With the

advent of DirectX 10, Geometry Shaders have emerged as a new method to generate

geometry on the GPU [Glassenberg 2006]. These changes in the graphics industry point to a

determined move towards procedural techniques and in particular parallelisable procedural

techniques. Thus, the next logical step forwards for research is the optimisation of suitable

procedural generation algorithms, such as our implementation of city generation, for

execution on the GPU.

Real-time Rendering

Currently, the Citygen system executes the procedural generation of every city component

and region in advance and a single level of detail is supported. However, using the native

graph structures within the Citygen application, proximity and region data can be utilised to

provide optimisations for real-time rendering. A technique is proposed, titled City Cell

Paging, which is a method of geometry paging for cities. Similar to terrain paging algorithms

the world is divided into regions and only the regions near to the camera need to be viewable

and the remaining regions can be pre-emptively generated and loaded on demand using an

adjacency model. To accomplish this City Cell Paging scheme, an efficient method to

calculate the proximity of geometry and a structural partition of the city is required. The road

graph data structures present in Citygen already contain the required adjacency data and can

be used to access neighbouring regions directly without the need for expensive calculations.

Each city produced by Citygen is procedural generated in a series of regions and an inherent

113

Chapter 7 Conclusions

hierarchical structure of regions composed of cells, blocks and lots is present. The adjacency

model and hierarchical partition form the basic building blocks for such a scheme but

additional research and development is required to implement the proposed system.

Building Generation

The building materials applied in Citygen are selected from a very limited set. There are no

technical constraints on the number of materials used, beyond the standard graphics memory

limitations. The only reason for limited textures are the time requirements of their authoring.

Material property sets can be edited in the Citygen application so user edited textures and

relief maps can be easily added. An obvious improvement could be gained in the realism and

variety of the output if larger, more varied or professionally authored texture sets were used.

The building geometries displayed in the Citygen application are primitive shapes defined by

an extrusion of the proposed building footprint. These shapes provide basic visualisation for

buildings but were primarily designed to provide a bounding volume that could be used later

by a dedicated building generation component. Further research is required to develop a

building generation system or to integrate an existing generation component.

7.5 Conclusions

In this final section we outline the applications of our system and draw a number of

conclusions on the success of our research. The procedural city generation system we have

developed may not immediately solve the content creation problems facing the industry, but

it can play a part by fulfilling a useful role in the construction of an urban model. Citygen, our

standalone application, is ready to use and provides a tool for content authors to begin

creating their own cities. The level of visual detail required can vary depending on the

application and for this reason our tool is likely to be used in different ways. In cases where

high complexity models are required: Citygen can be used to generate a base model, this can

be loaded as a background or imported into a 3D authoring tool like Maya, via Collada,

where more detail can be added. For applications where real-time rendering is a concern or

where a lower complexity model is desired the system can be used to generate a complete

city with user specified materials and terrain. Additionally, for applications such as flight

simulators, where a large amount of low complexity models are required, the generation

component could be linked into the users game engine and used to generate cityscapes on

demand from concise definitions.

114

Chapter 7 Conclusions

The approach taken by our research has proved to yield a useful system that is easy to apply

to the procedural generation of cities. The operation of Citygen is accessible and familiar to

those working in the content creation field of the graphics industry. Obviously the generation

system is not without faults and we have outlined a number of areas where future research

would be beneficial. However, Citygen demonstrates that procedural techniques can create

realistic cityscapes suitable for real-time rendering and proves that interactive and tactile

control for procedural city generation is both possible and desirable. Finally, as we look to

the future, procedural techniques will undoubtedly become more predominant as researchers

and developers encapsulate the behaviour of increasingly complex phenomena into code.

115

References
AICHHOLZER O., FRANZ AURENHAMMER, ALBERTS D. AND GÄRTNER B. 1995. A Novel Type of

Skeleton for Polygons. Journal of Universal Computer Science, Graz University Of
Technology, 752-761.

AKENINE-MÖLLER T. AND ERIC HAINES 2002. Real-Time Rendering, A K Peters, Ltd.,
Wellesley, MA, USA.

ALEXANDER C., ISHIKAWA S. AND SILVERSTEIN M. 1977. A Pattern Language: Towns,
Buildings, Construction (Center for Environmental Structure Series), Oxford University
Press, New York, NY, USA.

AMD 2007. Accelerated Computing Solution that Breaks Teraflop Barrier.
http://www.amd.com/us-en/Corporate/VirtualPressRoom/0,,51_104_543~116238,00.html.
Last accessed: 22 Aug 2007.

BARNSLEY M. 1988. Fractals Everywhere, Academic Press Professional, Inc., San Diego,
CA, USA.

BOOST 2007. Boost C++ Libraries, free peer-reviewed portable C++ source libraries.
http://www.boost.org. Last accessed: 14 Oct 2007.

EBERLY D. 2005. The Minimal Cycle Basis for a Planar Graph . Geometric Tools, Inc..

EBERT D., MUSGRAVE K., PEACHY D., PERLIN K. AND WORLEY S. 2003. Texturing &
Modelling - A Procedural Approach, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

FÁBIO POLICARPO, MANUEL M. OLIVEIRA AND JÕAO L. D. COMBA 2005. Real-Time Relief
Mapping on Arbitrary Polygonal Surfaces. In Symposium on Interactive 3D Graphics and
Games, ACM SIGGRAPH, 155-162.

FARBRAUSCH 2007. .debris - Nominee for Scene.org Awards 2007 in the Category of Best
Demo. http://www.theprodukkt.com/kkrieger. Last accessed: 15 Nov 2007.

FELKEL P. AND OBDRZALEK S. 1998. Straight Skeleton Implementation. In 14th Spring
Conference on Computer Graphics (SCCG'98), 210-218.

GAMASUTRA 2002. New Middleware Tool For Rendering Trees.
http://www.gamasutra.com/php-bin/news_index.php?story=1314. Last accessed: 5 Apr
2006.

GLASSENBERG S. 2006. DirectX Graphics: Direct3D 10 and Beyond. In Proceedings of
WinHEC 2006, Microsoft Corporation.

GREUTER S., PARKER J., STEWART N., AND LEACH G. 2003. Real-time procedural generation
of `pseudo infinite' cities. In Proceedings of GRAPHITE 2003, ACM Press, 87-95.

116

GREUTER S., STEWART N. AND LEACH G. 2004. Beyond the Horizon: Computer-generated,
Three-dimensional, Infinite Virtual Worlds without Repetition. In Image Text and Sound
Conferance 2004, RMIT Publishing.

HART E. 2002. 3D Textures and Pixel Shaders. In Direct3D ShaderX: Vertex and Pixel
Shader Tips and Tricks, Wordware, Plano, Texas.

INTERACTIVE DATA VISUALIZATION INC. 2006. SpeedTree RT. http://www.speedtree.com.
Last accessed: 22 Aug 2006.

INTERNATIONAL SCENE ORGANIZATION 2004. Scene Awards 2004. http://scene.org/awards.php?
year=2004. Last accessed: 10 Aug 2006.

LECHNER T., WATSON B., WILENSKY U. AND FELSEN M. 2003. Procedural City Modeling.
Northwestern University.

LEFEBVRE S. AND NEYRET F. 2003. Pattern Based Procedural Textures. In ACM-SIGGRAPH
Symposium on Interactive 3D Graphics (I3D), ACM Press, 203 - 212.

LINDEN W. AND SCHACHINGER E. 2002. Fractals - Computersimulations.
http://itp.tugraz.at/LV/wvl/Comp_Simulationen. Last accessed: 10 Sep 2007.

LINDENMAYER A. 1968. Mathematical models for cellular interaction in development, Parts I
and II. In Journal of Theoretical Biology, Vol. 18, No. 3, 280-315.

LLUCH J., CAMAHORT E. AND VIVÓ R. 2003. Procedural multiresolution for plant and tree
rendering. In AFRIGRAPH '03: Proceedings of the 2nd international conference on
Computer graphics, virtual Reality, visualisation and interaction in Africa, ACM.

LYNCH K. 1960. The Image of the City, Cambridge: MIT Press, Cambridge, MA, USA.

MANDELBROT B. 1982. The Fractal Geometry of Nature, W.H. Freeman & Co., New York,
NY, USA.

MÜLLER P. 2006. Pascal Muellers Wiki - Procedural Modeling of CG Architecture -
The CityEngine. http://www.vision.ee.ethz.ch/~pmueller/wiki/pmwiki.php/CityEngine.
Last accessed: 8 Jun 2006.

NVIDIA 2007. GeForce 8800 Frequently Asked Questions, Nvidia.
http://www.nvidia.com/object/8800_faq.html. Last accessed: 6 Nov 2007.

O'ROURKE J. 1998. Comp.Graphics.Algorithms - Frequently Asked Questions.
http://www.faqs.org/faqs/graphics/algorithms-faq/. Last accessed: 10 Nov 2007.

OGRE 2007. OGRE (Object-Oriented Graphics Rendering Engine) is a scene-oriented,
flexible 3D rendering engine. http://www.ogre3d.org. Last accessed: 6 Sep 2007.

PAETH A. 1995. Graphics Gems V: IBM Version, Academic Press, Inc., Orlando, FL, USA.

PANDROMEDA. 2006. Mojo World Applications. Published by Pandromeda Software.

PARISH Y. AND MÜLLER P. 2001. Procedural Modeling of Cities. In Proceedings of ACM
SIGGRAPH 2001, ACM Press, 301-308.

117

PERLIN K. 1999. Making Noise. Based on a talk presented at GDCHardCore on Dec 9, 1999.
http://www.noisemachine.com/talk1/index.html. Last accessed: 25 Mar 2006.

PERLIN K. 1985. An Image Synthesizer. In SIGGRAPH '85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, ACM, 287-296.

PLANETSIDE 2004. Terragen is a scenery generator capable of photorealistic results.
http://www.planetside.co.uk/terragen. Last accessed: 10 Aug 2006.

PRUSINKIEWICZ P. AND LINDENMAYER A. 1990. The Algorithmic Beauty of Plants (The Virtual
Laboratory), Springer-Verlag, New York, NY, USA.

SENSIBLE SOFTWARE 1987. Shoot'Em-Up Construction Kit (SEUCK). Published by Outlaw.

SIDE EFFECTS 2005. Houdini. Published by Side Effects Software Ltd.

SONY COMPUTER ENTERTAINMENT 2007. COLLADA, XML-based schema to make it easy to
transport 3D assets between applications. http://www.collada.org. Last accessed: 08 Aug
2007.

SPITZER J., GREEN S. AND NVIDIA CORPORATION 2003. Noise and Procedural Techniques. In
Proceedings of Game Developers Conference 2003, GDC.

STINY, G. 1980. Introduction to shape and shape grammars. Environment and Planning B,
Pion Ltd, 343-361.

SUN J., XIAOBO Y., BACIU G. AND GREEN M. 2002. Template-based generation of road
networks for virtual city modeling. In VRST-02, ACM Press, 33-40.

TOMOMICHI KANEKO, TOSHIYUKI TAKAHEI, MASAHIKO INAMI, NAOKI KAWAKAMI, YASUYUKI
YANAGIDA, TARO MAEDA AND SUSUMU TACHI 2001. Detailed Shape Representation with
Parallax Mapping. In ICAT 2001 (The 11th International Conference on Artificial Reality
and Telexistence), The University of Tokyo, 205–208.

TRENDALL C. AND STEWART A.J. 2000. General calculations using graphics hardware, with
application to interactive caustics. In Eurographics Workshop on Rendering, Springer,
287-298.

URBANLAB 2006. www.chil.us = Chicago, Illinois, USA. http://www.chil.us.
Last accessed: 21 Jul 2007.

WONKA P., WIMMER M., SILLION F. AND RIBARSKY W. 2003. Instant Architecture. In
Proceedings of ACM SIGGRAPH 2003, ACM Press, 669-677.

WRIGHT W. 2005. The Future of Content - An Introduction to Spore. In Game Developers
Conference, CMP Game Group.

WXWIDGETS 2007. wxWidgets (formerly wxWindows), a widget toolkit for creating graphical
user interfaces. http://wxwidgets.org. Last accessed: 16 Oct 2007.

118

	Chapter 1
Introduction
	1.1 Background
	1.2 Procedural Generation
	1.3 City Generation
	1.4 Aims and Objectives
	1.5 Achievements
	1.6 Thesis Outline

	Chapter 2
Procedural Techniques Research
	2.1 Key Properties
	2.2 Fractals
	2.3 L-Systems
	2.4 Perlin Noise
	2.5 Tiling

	Chapter 3
City Generation Research
	3.1 The Structure of a City
	3.1.1 Primary Transit Network
	3.1.2 Neighbourhoods / Districts

	3.2 The Evaluation of City Generation Systems
	3.2.1 Critical Framework

	3.3 Grid Layout & Geometric Primitives
	3.3.1 Buildings: Geometric Primitives
	3.3.2 Real-time Optimisations
	3.3.3 Discussion

	3.4 L-systems
	3.4.1 Road Network: L-systems
	3.4.2 Buildings: L-systems
	3.4.3 Discussion

	3.5 Agent Based Simulation
	3.5.1 Road Network: Agent Based Simulation
	3.5.2 Buildings: Agent Based Simulation
	3.5.3 Discussion

	3.6 Template Based Generation
	3.6.1 Road Network: Template Based Generation
	3.6.2 Discussion

	3.7 Split Grammars
	3.7.1 Buildings: Split Grammars
	3.7.2 Discussion

	3.8 Conclusions

	Chapter 4
Interactive City Generation Design
	4.1 Overview
	4.2 Primary Road Network
	4.2.1 Adaptive Roads
	4.2.2 Sampling
	4.2.3 Sample Selection Strategies
	4.2.3.1 Minimum Elevation Strategy
	4.2.3.2 Minimum Elevation Difference
	4.2.3.3 Even Elevation Difference

	4.3 Secondary Road Generation
	4.3.1 City Cells
	4.3.2 Secondary Road Growth
	4.3.3 Snap Algorithm
	4.3.3.1 Extended Bounding Box Exclusion
	4.3.3.2 Testing Procedure
	4.3.3.3 Test 1: Node Proximity
	4.3.3.4 Test 2: Segment Proximity
	4.3.3.5 Test 3: Segment Proximity

	4.3.4 Summary of Secondary Road Generation

	4.4 Building Generation
	4.4.1 Blocks
	4.4.1.1 Straight Skeleton Inset

	4.4.2 Lot Subdivision
	4.4.2.1 Even and Accurate Lot Subdivision
	4.4.2.2 Perpendicular Lot Orientation
	4.4.2.3 Concave and Convex Lot Subdivision

	4.4.3 Building Construction
	4.4.3.1 Building Footprints
	4.4.3.2 Building Geometry
	4.4.3.3 Building Materials and Shaders

	4.5 Summary

	Chapter 5
Citygen Implementation
	5.1 An Introduction to the Citygen UI
	Menu and Toolbar
	View Mode Toolbar
	Edit Mode Toolbar
	Property Inspector
	Output Log

	5.2 View Edit
	5.3 Node Edit
	5.3.1 Add Node - Chain Tool
	5.3.2 Validity Checking

	5.4 Road Edit
	5.4.1 Adaptive Road Control Properties

	5.5 Cell Edit
	5.5.1 Cell Generation Properties
	Manhattan
	Suburbia
	Industrial

	5.6 Building Tiles
	5.7 Integrated Game Engine: OGRE
	5.8 Graph Structures: BGL (Boost Graph Library)
	5.9 GUI Platform: wxWidgets
	5.10 Accessible Export: COLLADA
	5.11 Summary

	Chapter 6
City Generation Results
	6.1 Primary Road Network
	6.2 Adaptive Primary Roads
	6.3 Secondary Road Growth
	6.4 Building Generation
	6.5 Performance
	6.6 Development Integration
	6.7 Analysis
	6.8 Final Output

	Chapter 7
Conclusions
	7.1 Summary
	7.2 Achievements
	7.3 Project Assessment
	7.4 Future Work
	7.5 Conclusions

